Semantically Secure Lattice Codes for Compound MIMO Channels

We consider compound multi-input multi-output (MIMO) wiretap channels where minimal channel state information at the transmitter (CSIT) is assumed. Code construction is given for the special case of isotropic mutual information, which serves as a conservative strategy for general cases. Using the flatness factor for MIMO channels, we propose lattice codes universally achieving the secrecy capacity of compound MIMO wiretap channels up to a constant gap (measured in nats) that is equal to the number of transmit antennas. The proposed approach improves upon existing works on secrecy coding for MIMO wiretap channels from an error probability perspective, and establishes information theoretic security (in fact semantic security). We also give an algebraic construction to reduce the code design complexity, as well as the decoding complexity of the legitimate receiver. Thanks to the algebraic structures of number fields and division algebras, our code construction for compound MIMO wiretap channels can be reduced to that for Gaussian wiretap channels, up to some additional gap to secrecy capacity.

[1]  Holger Boche,et al.  Secrecy results for compound wiretap channels , 2011, Probl. Inf. Transm..

[2]  Miguel R. D. Rodrigues,et al.  Secrecy Capacity of Wireless Channels , 2006, 2006 IEEE International Symposium on Information Theory.

[3]  Carles Padró,et al.  Information Theoretic Security , 2013, Lecture Notes in Computer Science.

[4]  Alexander Vardy,et al.  Semantic Security for the Wiretap Channel , 2012, CRYPTO.

[5]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[6]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[7]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[8]  Richard D. Wesel,et al.  A Study on Universal Codes With Finite Block Lengths , 2007, IEEE Transactions on Information Theory.

[9]  Giuseppe Caire,et al.  Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels , 2004, IEEE Transactions on Information Theory.

[10]  Jean-Claude Belfiore,et al.  Algebraic reduction for the Golden Code , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[11]  Camilla Hollanti,et al.  Probability estimates for fading and wiretap channels from ideal class zeta functions , 2014, Adv. Math. Commun..

[12]  P. Varaiya,et al.  Capacity of Classes of Gaussian Channels , 1968 .

[13]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[14]  Cong Ling,et al.  Semantically Secure Lattice Codes for Compound MIMO Channels , 2019, IACR Cryptol. ePrint Arch..

[15]  Cong Ling,et al.  Universal Lattice Codes for MIMO Channels , 2016, IEEE Transactions on Information Theory.

[16]  Emanuele Viterbo,et al.  A Very Efficient Lattice Reduction Tool on Fast Fading Channels , 2004 .

[17]  Yuval Kochman,et al.  The MIMO Wiretap Channel Decomposed , 2015, IEEE Transactions on Information Theory.

[18]  Alexander Barg,et al.  Achieving Secrecy Capacity of the Wiretap Channel and Broadcast Channel With a Confidential Component , 2017, IEEE Transactions on Information Theory.

[19]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2007, 2008 IEEE International Symposium on Information Theory.

[20]  Himanshu Tyagi,et al.  Universal Hashing for Information-Theoretic Security , 2014, Proceedings of the IEEE.

[21]  Cong Ling Achieving capacity and security in wireless communications with lattice codes , 2016, 2016 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[22]  Aylin Yener,et al.  MIMO Wiretap Channels With Unknown and Varying Eavesdropper Channel States , 2014, IEEE Transactions on Information Theory.

[23]  Ashish Khisti,et al.  Interference Alignment for the Multiantenna Compound Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[24]  Sennur Ulukus,et al.  Polar coding for the general wiretap channel , 2014, 2015 IEEE Information Theory Workshop (ITW).

[25]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[26]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[27]  Charalambos D. Charalambous,et al.  A General Formula for Compound Channel Capacity , 2015, IEEE Transactions on Information Theory.

[28]  Frédérique E. Oggier,et al.  An Error Probability Approach to MIMO Wiretap Channels , 2011, IEEE Transactions on Communications.

[29]  Matthieu R. Bloch,et al.  Wireless Information-Theoretic Security , 2008, IEEE Transactions on Information Theory.

[30]  Rafael F. Schaefer,et al.  The Secrecy Capacity of Compound Gaussian MIMO Wiretap Channels , 2015, IEEE Transactions on Information Theory.

[31]  Antonio Campello,et al.  Random Ensembles of Lattices From Generalized Reductions , 2017, IEEE Transactions on Information Theory.

[32]  Cong Ling,et al.  Almost Universal Codes for MIMO Wiretap Channels , 2018, IEEE Transactions on Information Theory.

[33]  Jean-Claude Belfiore,et al.  Lattice Codes for the Wiretap Gaussian Channel: Construction and Analysis , 2011, IEEE Transactions on Information Theory.

[34]  Jean-Claude Belfiore,et al.  The semantic secrecy rate of the lattice Gaussian coding for the Gaussian wiretap channel , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[35]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[36]  Uri Erez,et al.  Precoded integer-forcing universally achieves the MIMO capacity to within a constant gap , 2013, 2013 IEEE Information Theory Workshop (ITW).

[37]  Charalambos D. Charalambous,et al.  Optimal Signaling for Secure Communications Over Gaussian MIMO Wiretap Channels , 2016, IEEE Transactions on Information Theory.

[38]  Cong Ling,et al.  Semantically Secure Lattice Codes for the Gaussian Wiretap Channel , 2012, IEEE Transactions on Information Theory.

[39]  Frédérique E. Oggier,et al.  Construction A of Lattices Over Number Fields and Block Fading (Wiretap) Coding , 2014, IEEE Transactions on Information Theory.

[40]  Shlomo Shamai,et al.  Secrecy Capacity Region of Fading Broadcast Channels , 2007, 2007 IEEE International Symposium on Information Theory.

[41]  Shlomo Shamai,et al.  Compound Wiretap Channels , 2009, EURASIP J. Wirel. Commun. Netw..

[42]  Jean-Claude Belfiore,et al.  Lattice code design criterion for MIMO wiretap channels , 2015, 2015 IEEE Information Theory Workshop - Fall (ITW).