Preparation, optimization and thermal characterization of paraffin/nano-Fe3O4 composite phase change material for solar thermal energy storage

[1]  Xiaowu Hu,et al.  Enhanced thermal performance of phase-change material supported by nano-Ag coated eggplant-based biological porous carbon , 2021, Journal of Energy Storage.

[2]  P. Shukla,et al.  Effect of shape and size of carbon materials on the thermophysical properties of magnesium nitrate hexahydrate for solar thermal energy storage applications , 2021 .

[3]  Chen Chen,et al.  A novel solar hydrogen production system integrating high temperature electrolysis with ammonia based thermochemical energy storage , 2021 .

[4]  Chunwei Zhang,et al.  Performance enhancement of latent thermal energy system under alternating magnetic field , 2021 .

[5]  Yongxue Zhang,et al.  Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit , 2021 .

[6]  Ashish Kumar,et al.  Performance study of a novel funnel shaped shell and tube latent heat thermal energy storage system , 2021 .

[7]  J. Chen,et al.  Renewable energy investment and carbon emissions under cap-and-trade mechanisms , 2021 .

[8]  H. Paksoy,et al.  Performance of laboratory scale packed-bed thermal energy storage using new demolition waste based sensible heat materials for industrial solar applications , 2020 .

[9]  B. Sundén,et al.  Experimental investigation of heat transfer performance of a heat pipe combined with thermal energy storage materials of CuO-paraffin nanocomposites , 2020 .

[10]  Yuning Zhang,et al.  On the thermodynamic behaviors and interactions between bubble pairs: A numerical approach , 2020, Ultrasonics sonochemistry.

[11]  Yulong Ding,et al.  Expanded graphite – Paraffin composite phase change materials: Effect of particle size on the composite structure and properties , 2020 .

[12]  Shuai Li,et al.  An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications , 2020 .

[13]  R. Sathyamurthy,et al.  Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM's) for fresh water production , 2020 .

[14]  A. Shahsavar,et al.  Sonication time efficacy on Fe3O4-liquid paraffin magnetic nanofluid thermal conductivity: An experimental evaluation. , 2020, Ultrasonics sonochemistry.

[15]  Zu-Guo Shen,et al.  Effect of fin material on PCM melting in a rectangular enclosure , 2020 .

[16]  R. Velraj,et al.  Augmenting the productivity of solar still using multiple PCMs as heat energy storage , 2019 .

[17]  Zhenjun Ma,et al.  Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage , 2019, Journal of Energy Storage.

[18]  Ya-Ling He,et al.  Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube , 2019, Applied Energy.

[19]  A. Shahsavar,et al.  A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network , 2019, International Journal of Heat and Mass Transfer.

[20]  Ya-Ling He,et al.  Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions , 2019, Applied Thermal Engineering.

[21]  H. Ali,et al.  Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review , 2018, International Journal of Heat and Mass Transfer.

[22]  Ya-Ling He,et al.  A review of phase change material and performance enhancement method for latent heat storage system , 2018, Renewable and Sustainable Energy Reviews.

[23]  Davood Domiri Ganji,et al.  Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger , 2018, International Journal of Heat and Mass Transfer.

[24]  F. Haghighat,et al.  Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging , 2017 .

[25]  B. Kamkari,et al.  Numerical simulation and experimental verification of constrained melting of phase change material in inclined rectangular enclosures , 2017 .

[26]  Jinyue Yan,et al.  Thermal performance of a shell-and-tube latent heat thermal energy storage unit : Role of annular fins , 2017 .

[27]  A. Raisi,et al.  Melting of cyclohexane–Cu nano-phase change material (nano-PCM) in porous medium under magnetic field , 2017 .

[28]  Rahmatollah Khodabandeh,et al.  Experimental study on solidification process of a phase change material containing TiO2 nanoparticles for thermal energy storage , 2017 .

[29]  Hakeem Niyas,et al.  Performance investigation of a lab–scale latent heat storage prototype – Numerical results , 2017 .

[30]  Prabhu Bose,et al.  A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material , 2016 .

[31]  R. K. Sharma,et al.  Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM) , 2016 .

[32]  M. Shahedi,et al.  Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity , 2016 .

[33]  Yurong He,et al.  Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids , 2015 .

[34]  Halime Paksoy,et al.  Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites , 2015 .

[35]  Mehdi Bahiraei,et al.  Flow and heat transfer characteristics of magnetic nanofluids: A review , 2014 .

[36]  Ruzhu Wang,et al.  Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes , 2013 .

[37]  Kamaruzzaman Sopian,et al.  Review of thermal energy storage for air conditioning systems , 2012 .

[38]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .