Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1

[1]  A. Kolstø,et al.  Unusual Group II Introns in Bacteria of the Bacillus cereus Group , 2005, Journal of bacteriology.

[2]  G. Meyfroidt,et al.  Fatal Family Outbreak of Bacillus cereus-Associated Food Poisoning , 2005, Journal of Clinical Microbiology.

[3]  Jacques Mahillon,et al.  The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. , 2005, Microbiology.

[4]  David A Rasko,et al.  Genomics of the Bacillus cereus group of organisms. , 2005, FEMS microbiology reviews.

[5]  M. Marahiel,et al.  Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. , 2005, Chemical reviews.

[6]  M. Andersson,et al.  Identification and Partial Characterization of the Nonribosomal Peptide Synthetase Gene Responsible for Cereulide Production in Emetic Bacillus cereus , 2005, Applied and Environmental Microbiology.

[7]  S. Scherer,et al.  Bacillus cereus, the causative agent of an emetic type of food-borne illness. , 2004, Molecular nutrition & food research.

[8]  P. E. Granum,et al.  Characterization of the Bacillus cereus Nhe enterotoxin. , 2004, Microbiology.

[9]  Michelle C. Moffitt,et al.  Characterization of the Nodularin Synthetase Gene Cluster and Proposed Theory of the Evolution of Cyanobacterial Hepatotoxins , 2004, Applied and Environmental Microbiology.

[10]  D. Lereclus,et al.  Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. , 2004, Microbiology.

[11]  Siegfried Scherer,et al.  Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. , 2004, FEMS microbiology letters.

[12]  David A Rasko,et al.  The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. , 2004, Nucleic acids research.

[13]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[14]  C Richard Hutchinson,et al.  A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. , 2003, Biochemistry.

[15]  N. Ariel,et al.  Search for Potential Vaccine Candidate Open Reading Frames in the Bacillus anthracis Virulence Plasmid pXO1: In Silico and In Vitro Screening , 2002, Infection and Immunity.

[16]  Mgb,et al.  Characterization of Bacillus cereus , 2002 .

[17]  M. Marahiel,et al.  Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Marahiel,et al.  Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Mikkola,et al.  Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus , 2002, Clinical and experimental immunology.

[20]  M. Salkinoja-Salonen,et al.  Quantitative Analysis of Cereulide, the Emetic Toxin of Bacillus cereus, Produced under Various Conditions , 2002, Applied and Environmental Microbiology.

[21]  James Pannucci,et al.  Bacillus anthracis pXO1 Plasmid Sequence Conservation among Closely Related Bacterial Species , 2002, Journal of bacteriology.

[22]  C. Walsh,et al.  Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. , 2001, Current opinion in chemical biology.

[23]  Y. Shai,et al.  Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. , 2001, FEMS microbiology letters.

[24]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[25]  P. E. Granum,et al.  A new cytotoxin from Bacillus cereus that may cause necrotic enteritis , 2000, Molecular microbiology.

[26]  M. Marahiel,et al.  Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase , 2000, Nature.

[27]  D. J. Beecher,et al.  Tripartite haemolysin BL: isolation and characterization of two distinct homologous sets of components from a single Bacillus cereus isolate. , 2000, Microbiology.

[28]  S. Scherer,et al.  The Hemolytic Enterotoxin HBL Is Broadly Distributed among Species of the Bacillus cereusGroup , 1999, Applied and Environmental Microbiology.

[29]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[30]  N. Kelleher,et al.  Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. , 1999, Chemistry & biology.

[31]  M. Marahiel,et al.  How do peptide synthetases generate structural diversity? , 1999, Chemistry & biology.

[32]  T. Stachelhaus,et al.  Peptide Bond Formation in Nonribosomal Peptide Biosynthesis , 1998, The Journal of Biological Chemistry.

[33]  C. Walsh,et al.  Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. , 1998, Biochemistry.

[34]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[35]  Mohamed A. Marahiel,et al.  Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. , 1997, Chemical reviews.

[36]  J. Vater,et al.  Multifunctional Peptide Synthetases. , 1997, Chemical reviews.

[37]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[38]  M. Marahiel Protein templates for the biosynthesis of peptide antibiotics. , 1997, Chemistry & biology.

[39]  P. Brick,et al.  Structural basis for the activation of phenylalanine in the non‐ribosomal biosynthesis of gramicidin S , 1997, The EMBO journal.

[40]  Yves Van de Peer,et al.  Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites , 1997, Comput. Appl. Biosci..

[41]  S. Krähenbühl,et al.  Fulminant liver failure in association with the emetic toxin of Bacillus cereus. , 1997, The New England journal of medicine.

[42]  M. Mori,et al.  A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. , 1994, FEMS microbiology letters.

[43]  P. E. Granum Bacillus cereus and its toxins. , 1994, Society for Applied Bacteriology symposium series.

[44]  T. Stachelhaus,et al.  Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin S operon in Bacillus brevis , 1994, Journal of bacteriology.

[45]  R. Zocher,et al.  Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N‐methyldepsipeptide formation in Fusarium scirpi , 1993, Molecular microbiology.

[46]  M. Marahiel,et al.  Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate‐forming enzymes , 1992, Molecular microbiology.

[47]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[48]  A. Kolstø,et al.  Physical map of the Bacillus cereus chromosome , 1990, Journal of bacteriology.

[49]  E N Trifonov,et al.  A computer algorithm for testing potential prokaryotic terminators. , 1984, Nucleic acids research.

[50]  Christophe Nguyen-The,et al.  Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. , 2005, Microbiology.

[51]  P. Turnbull,et al.  Introduction: anthrax history, disease and ecology. , 2002, Current topics in microbiology and immunology.

[52]  N. Kelleher,et al.  Erratum: Assembly line enzymology by multimodular nonribosomal peptide synthetases: The thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization (Chemistry and Biology (1999) 6 (385-400)) , 1999 .