Separation Axioms: Representation Theorems, Compactness, and Compactifications

In the historical development of general topology, the searches for appropriate compactness axioms and appropriate separation axioms are closely intertwined with each other. That such intertwining is important is proven by both the Alexandrov and Stone-Cech compactifications; that such intertwining is to be expected follows from the duality between compactness and separation—the former restricts, and the latter increases, the number of open sets; and that such intertwining is categorically necessary is proven by the categorical nature of the Stone-Cech compactification and its relationship to the Stone representation theorems. Furthermore, these compactifications and many other well-known results justify the compact Hausdorff spaces of traditional mathematics.

[1]  Albert J. Klein Closure in fuzzy topology , 1981 .

[2]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[3]  M. Stone Applications of the theory of Boolean rings to general topology , 1937 .

[4]  M H Stone Boolean Algebras and Their Application to Topology. , 1934, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Stone,et al.  The representation of Boolean algebras , 1938 .

[6]  Y M Liu,et al.  INDUCED SPACES AND FUZZY STONE-CECH COMPACTIFICATIONS , 1987 .

[7]  Stephen E. Rodabaugh,et al.  Connectivity and the L-fuzzy unit interval , 1982 .

[8]  A. J. Klein,et al.  Generating fuzzy topologies with semi-closure operators , 1983 .

[9]  A. J. Klein,et al.  Generalizing the L-fuzzy unit interval , 1984 .

[10]  Tomasz Kubiak,et al.  On L -Tychonoff spaces , 1995 .

[11]  Stephen E. Rodabaugh,et al.  Categorical Frameworks for Stone Representation Theories , 1992 .

[12]  Stephen E. Rodabaugh,et al.  POWERSET OPERATOR FOUNDATIONS FOR POINT-SET LATTICE-THEORETIC (POSLAT) FUZZY SET THEORIES AND TOPOLOGIES , 1997 .

[13]  Stephen E. Rodabaugh,et al.  Applications of localic separation axioms, compactness axioms, representations, and compactifications to poslat topological spaces , 1995 .

[14]  Stephen E. Rodabaugh,et al.  Lowen, para-Lowen, and α-level functors and fuzzy topologies on the crisp real line , 1988 .

[15]  B. Hutton,et al.  Products of fuzzy topological spaces , 1980 .

[16]  Mira Sarkar,et al.  On fuzzy topological spaces , 1981 .

[17]  Stephen E. Rodabaugh,et al.  Dynamic topologies and their applications to crisp topologies, fuzzifications of crisp topologies, and fuzzy topologies on the crisp real line , 1988 .

[18]  U. Höhle,et al.  Applications of category theory to fuzzy subsets , 1992 .

[19]  C. L. Chang,et al.  Fuzzy topological spaces , 1968 .

[20]  The stone-čech compactification in the category of fuzzy topological spaces , 1981 .

[21]  Harold W Martin A Stone-Čech ultrafuzzy compactification , 1980 .

[22]  C. H. Dowker,et al.  ON URYSOHN'S LEMMA , 1967 .

[23]  C. Wong,et al.  Fuzzy topology: Product and quotient theorems , 1974 .

[24]  S. Lane Categories for the Working Mathematician , 1971 .

[25]  John R. Isbell,et al.  Atomless Parts of Spaces. , 1972 .

[26]  Stephen E. Rodabaugh,et al.  Point-set lattice-theoretic topology , 1991 .

[27]  Stephen E. Rodabaugh,et al.  The Hausdorff separation axiom for fuzzy topological spaces , 1980 .

[28]  Joseph A. Goguen,et al.  The fuzzy tychonoff theorem , 1973 .

[29]  Stephen E. Rodabaugh,et al.  Separation axioms and the fuzzy real lines , 1983 .

[30]  R. H. Warren Neighborhoods, bases and continuity in fuzzy topological spaces , 1978 .

[31]  T. Gantner,et al.  COMPACTNESS IN FUZZY TOPOLOGICAL SPACES , 1978 .

[32]  B. Hutton Normality in fuzzy topological spaces , 1975 .

[33]  Stephen E. Rodabaugh,et al.  Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .

[34]  Alexander P. Sostak,et al.  Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .

[35]  Ivan L. Reilly,et al.  Separation axioms in fuzzy topological spaces , 1980 .

[36]  M. Stone,et al.  A General Theory of Spectra. I: I. , 1940, Proceedings of the National Academy of Sciences of the United States of America.