Enhanced photocatalytic hydrogen evolution of Ru/TiO2-x via oxygen vacancy-assisted hydrogen spillover process.

[1]  Xiaocong Liang,et al.  Rh/Cr2O3 and CoOx Cocatalysts for Efficient Photocatalytic Water Splitting by Poly (Triazine Imide) Crystals. , 2023, Angewandte Chemie.

[2]  Fangxi Xie,et al.  In Situ Formation ZnIn2 S4 /Mo2 TiC2 Schottky Junction for Accelerating Photocatalytic Hydrogen Evolution Kinetics: Manipulation of Local Coordination and Electronic Structure. , 2023, Small.

[3]  Zijun Sun,et al.  Boosting Photocatalytic Ammonia Synthesis Performance over OVs-Rich Ru/W18O49: Insights into the Roles of Oxygen Vacancies in Enhanced Hydrogen Spillover Effect , 2023, Chemical Engineering Journal.

[4]  Jianfeng Huang,et al.  Fullerene Lattice‐Confined Ru Nanoparticles and Single Atoms Synergistically Boost Electrocatalytic Hydrogen Evolution Reaction , 2023, Advanced Functional Materials.

[5]  Yi‐Jun Xu,et al.  Engineering Semiconductor Quantum Dots for Selectivity Switch on High-Performance Heterogeneous Coupling Photosynthesis. , 2022, ACS nano.

[6]  Bin Liu,et al.  Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting , 2022, Nature Communications.

[7]  Y. Qu,et al.  Boosting Electrocatalytic Activity of Ru for Acidic Hydrogen Evolution through Hydrogen Spillover Strategy , 2022, ACS Energy Letters.

[8]  Inho Nam,et al.  Exploring the Effect of Cation Vacancies in TiO2: Lithiation Behavior of n-Type and p-Type TiO2. , 2022, ACS applied materials & interfaces.

[9]  Jinhua Ye,et al.  Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity , 2021, Joule.

[10]  Yi‐Jun Xu,et al.  Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts. , 2021, Chemical reviews.

[11]  Wei Zhou,et al.  Computational Screening of Single Atoms Anchored on Defective Mo2CO2 MXene Nanosheet as Efficient Electrocatalysts for the Synthesis of Ammonia , 2021, Advanced Engineering Materials.

[12]  Xiaochao Zhang,et al.  Atomically dispersed Palladium-Ethylene Glycol- Bismuth oxybromide for photocatalytic nitrogen fixation: Insight of molecular bridge mechanism. , 2021, Journal of colloid and interface science.

[13]  D. Dang,et al.  Entrapping Ru nanoparticles into TiO2 nanotube: Insight into the confinement synergy on boosting pho-thermal CO2 methanation activity , 2021 .

[14]  Kun Xu,et al.  Reversed Charge Transfer and Enhanced Hydrogen Spillover in Pt Nanoclusters Anchored on Titanium Oxide with Rich Oxygen Vacancies Boost Hydrogen Evolution Reaction. , 2021, Angewandte Chemie.

[15]  Jianpeng Shi,et al.  Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H2 evolution. , 2021, Journal of colloid and interface science.

[16]  Q. Yan,et al.  Ni nanoparticles/V4C3Tx MXene heterostructures for electrocatalytic nitrogen fixation , 2021, Materials Chemistry Frontiers.

[17]  Yong Qin,et al.  Spillover in Heterogeneous Catalysis: New Insights and Opportunities , 2021 .

[18]  Sai Zhang,et al.  A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution , 2020, Nature Communications.

[19]  Hao Yu,et al.  Regulating Electron-Hole Separation to Promote Photocatalytic H2 Evolution Activity of Nanoconfined Ru/MXene/TiO2 Catalysts. , 2020, ACS nano.

[20]  Feng Wang,et al.  Selective loading of atomic Pt on a RuCeOx support enables stable hydrogen evolution at high current densities. , 2020, Angewandte Chemie.

[21]  Y. Chai,et al.  Computational Design of Transition Metal Single Atom Electrocatalysts on PtS2 for Efficient Nitrogen Reduction. , 2020, ACS applied materials & interfaces.

[22]  R. Behjatmanesh-Ardakani,et al.  Dispersion of Defects in TiO2 Semiconductor: Oxygen Vacancies in the Bulk and Surface of Rutile and Anatase , 2020, Catalysts.

[23]  Yi‐Jun Xu,et al.  Noble metal free CdS@CuS-NixP hybrid with modulated charge transfer for enhanced photocatalytic performance , 2019, Applied Catalysis B: Environmental.

[24]  Jinjia Wei,et al.  Through hydrogen spillover to fabricate novel 3DOM-HxWO3/Pt/CdS Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution , 2019, Applied Catalysis B: Environmental.

[25]  Yi‐Jun Xu,et al.  Earth-Abundant MoS2 and Cobalt Phosphate Dual Cocatalysts on 1D CdS Nanowires for Boosting Photocatalytic Hydrogen Production. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[26]  Zhiqun Lin,et al.  Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. , 2019, Chemical Society reviews.

[27]  Sai Zhang,et al.  Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover , 2019, Energy & Environmental Science.

[28]  M. Jaroniec,et al.  Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media , 2019, Chem.

[29]  Q. Cheng,et al.  Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation , 2019, Applied Catalysis B: Environmental.

[30]  Yue Zhao,et al.  Redox-Based Visible-Light-Driven Z-Scheme Overall Water Splitting with Apparent Quantum Efficiency Exceeding 10% , 2018, Joule.

[31]  Jincai Zhao,et al.  Energy-confined solar thermal ammonia synthesis with K/Ru/TiO 2-x H x , 2018 .

[32]  Hangjia Shen,et al.  Identification of active sites for hydrogenation over Ru/SBA-15 using in situ Fourier-transform infrared spectroscopy , 2017 .

[33]  Yi‐Jun Xu,et al.  One dimensional CdS based materials for artificial photoredox reactions , 2017 .

[34]  Chuncheng Chen,et al.  The Formation of Ti-H Species at Interface Is Lethal to the Efficiency of TiO2-Based Dye-Sensitized Devices. , 2017, Journal of the American Chemical Society.

[35]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[36]  Chuang Han,et al.  Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements , 2016 .

[37]  Yi‐Jun Xu,et al.  Insight into the Effect of Highly Dispersed MoS2 versus Layer-Structured MoS2 on the Photocorrosion and Photoactivity of CdS in Graphene–CdS–MoS2 Composites , 2015 .

[38]  G. Pacchioni,et al.  Hydrogen Adsorption, Dissociation, and Spillover on Ru10 Clusters Supported on Anatase TiO2 and Tetragonal ZrO2 (101) Surfaces , 2015 .

[39]  Li Wang,et al.  Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. , 2015, Journal of the American Chemical Society.

[40]  I. Chorkendorff,et al.  Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02685c Click here for additional data file. , 2014, Chemical science.

[41]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[42]  Zhiyuan Zeng,et al.  Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets , 2013, Nature Communications.

[43]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[44]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[45]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[46]  C. Bock,et al.  Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. , 2004, Journal of the American Chemical Society.

[47]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[48]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  Yan Li,et al.  Fabrication of Ru nanoclusters on Co-doped NiSe nanorods with efficient electrocatalytic activity towards alkaline hydrogen evolution via hydrogen spillover effect , 2023, Journal of Materials Chemistry A.

[52]  Huogen Yu,et al.  One-step solvothermal synthesis of topological insulator Bi2Te3 nanorod-modified TiO2 photocatalyst for enhanced H2-evolution activity , 2022, Journal of Materials Chemistry C.

[53]  Aiyuan Li,et al.  Engineering the geometric and electronic structure of Ru via Ru-TiO2 interaction for enhanced selective hydrogenation , 2022, Catalysis science & technology.

[54]  Ho-Suk Choi,et al.  Suppression of Charge Recombination in Dye-Sensitized Solar Cells Using the Plasma Treatment of Fluorine-Doped Tin Oxide Substrates , 2015 .

[55]  Ho-Suk Choi,et al.  Graphene-based RuO2 nanohybrid as a highly efficient catalyst for triiodide reduction in dye-sensitized solar cells , 2015 .

[56]  Ho-Suk Choi,et al.  Plasma Reduction of Nanostructured TiO2 Electrode to Improve Photovoltaic Efficiency of Dye-Sensitized Solar Cells , 2014 .