Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm

We report a 4.8{$σ$} detection of water absorption features in the day side spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R {\tilde} 100 000) spectra taken at 3.2 {$μ$}m with CRIRES on the VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (V\_sys=-3\^{}$\{$+5$\}$\_$\{$-6$\}$ km s$^{-1}$) and planet orbital velocity (K\_p=154\^{}$\{$+14$\}$\_$\{$-10$\}$ km s$^{-1}$), and determine a H$_{2}$O line contrast ratio of (1.3 {\plusmn} 0.2) {\times} 10$^{-3}$ with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection to 5.1{$σ$} with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectroscopy is suited to finding not just simple molecules like CO, but also to more complex molecules like H$_{2}$O even in highly telluric contaminated regions of the Earth's transmission spectrum. It is a powerful tool that can be used for conducting an immediate census of the carbon- and oxygen-bearing molecules in the atmospheres of giant planets, and will potentially allow the formation and migration history of these planets to be constrained by the measurement of their atmospheric C/O ratios.

[1]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[2]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[3]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[4]  R. J. de Kok,et al.  DETECTION OF MOLECULAR ABSORPTION IN THE DAYSIDE OF EXOPLANET 51 PEGASI b? , 2013, 1302.6242.

[5]  Christophe Dupuy,et al.  MACAO-VLTI: an adaptive optics system for the ESO interferometer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[6]  Michel Mayor,et al.  The Rossiter-McLaughlin effect of CoRoT-3b and HD 189733b , 2009, 0907.2956.

[7]  Michel Mayor,et al.  ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733 , 2005 .

[8]  Katharina Lodders,et al.  Jupiter Formed with More Tar than Ice , 2004 .

[9]  Gautam Vasisht,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[10]  F. Bouchy,et al.  A Spitzer Search for Water in the Transiting Exoplanet HD 189733b , 2007, 0709.0576.

[11]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[12]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[13]  Caltech,et al.  Probing the haze in the atmosphere of HD 189733b with HST/WFC3 transmission spectroscopy , 2012, 1201.6573.

[14]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[15]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[16]  Tsevi Mazeh,et al.  Correcting systematic effects in a large set of photometric light curves , 2005, astro-ph/0502056.

[17]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.

[18]  University of Exeter,et al.  A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features , 2010, 1010.1753.

[19]  Martin Kürster,et al.  Detection of CO absorption in the atmosphere of the hot Jupiter HD 189733b , 2013 .

[20]  A. Burrows,et al.  A Spitzer Spectrum of the Exoplanet HD 189733b , 2007 .

[21]  Gerhard Fischer,et al.  CRIRES: a high-resolution infrared spectrograph for ESO's VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[22]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[23]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[24]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[25]  G. Hebrard,et al.  Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS , 2009, 0907.4991.

[26]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[27]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[28]  I. P. Waldmann,et al.  GROUND-BASED NEAR-INFRARED EMISSION SPECTROSCOPY OF HD 189733B , 2011, 1104.0570.

[29]  Drake Deming,et al.  Accepted for publication in the Astrophysical Journal Strong Infrared Emission from the Extrasolar Planet HD189733b , 2006 .

[30]  R. Poole,et al.  FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY , 2013, 1302.3251.

[31]  L. Kedziora-Chudczer,et al.  Modelling the spectra of planets, brown dwarfs and stars using vstar , 2011, 1109.3748.

[32]  Geronimo L. Villanueva,et al.  NON-DETECTION OF L-BAND LINE EMISSION FROM THE EXOPLANET HD189733b , 2010, 1011.5507.

[33]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[34]  Simon Albrecht,et al.  Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b , 2013, 1304.4014.

[35]  Ignasi Ribas,et al.  WEIGHING THE NON-TRANSITING HOT JUPITER τ Boo b , 2012, 1206.6197.