Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition.

When silicon strip and slot waveguides are coated with a 50 nm amorphous titanium dioxide (TiO2) film, measured losses at a wavelength of 1.55 μm can be as low as (2 ± 1)dB/cm and (7 ± 2)dB/cm, respectively. We use atomic layer deposition (ALD), estimate the effect of ALD growth on the surface roughness, and discuss the effect on the scattering losses. Because the gap between the rails of a slot waveguide narrows by the TiO2 deposition, the effective slot width can be back-end controlled. This is useful for precise adjustment if the slot is to be filled with, e. g., a nonlinear organic material or with a sensitizer for sensors applications.

[1]  L. Vivien,et al.  Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides , 2006, Journal of Lightwave Technology.

[2]  L C Kimerling,et al.  Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction. , 2001, Optics letters.

[3]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[4]  Seppo Honkanen,et al.  Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition , 2009 .

[5]  L. Vivien,et al.  Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides , 2004, IEEE Photonics Technology Letters.

[6]  S. Spector,et al.  Silicon waveguide sidewall smoothing by wet chemical oxidation , 2005, Journal of Lightwave Technology.

[7]  Qianfan Xu,et al.  Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. , 2004, Optics letters.

[8]  M. Kuittinen,et al.  Atomic layer deposited titanium dioxide and its application in resonant waveguide grating. , 2010, Applied optics.

[9]  L. Kimerling,et al.  Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model , 2000 .

[10]  D. Van Thourhout,et al.  Focused-Ion-Beam Fabrication of Slots in Silicon Waveguides and Ring Resonators , 2008, IEEE Photonics Technology Letters.

[11]  P. Waldron,et al.  Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge Waveguides , 2009, Journal of Lightwave Technology.

[12]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[13]  Wolfgang Freude,et al.  Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics , 2009, Proceedings of the IEEE.

[14]  Amadeu Griol,et al.  Slot-waveguide biochemical sensor. , 2007, Optics letters.

[15]  C Koos,et al.  Nonlinear silicon-on-insulator waveguides for all-optical signal processing. , 2007, Optics express.

[16]  C. Koos,et al.  Radiation Modes and Roughness Loss in High Index-Contrast Waveguides , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  F. Payne,et al.  A theoretical analysis of scattering loss from planar optical waveguides , 1994 .

[18]  P. Bienstman,et al.  Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator , 2009, IEEE Photonics Journal.