Enhancement of genuine multipartite entanglement and purity of three qubits under decoherence via bang–bang pulses with finite period

We propose a scheme to control the dynamics of genuine multipartite entanglement and purity of qubits within spatially separated thermal baths using the bang–bang pulses with finite period. The qubits are initially entangled and have no direct interactions. The genuine multipartite entanglement of the system is measured by an entanglement monotone based on a generalization of the Peres–Horodecki criterion to multipartite systems. We first derive a master equation to describe the non-Markovian dynamics of an arbitrary number of qubits within their baths with decoherence and dynamical decoupling. Then, we calculate the entanglement monotone and purity of three qubits in super-Ohmic, sub-Ohmic, and Ohmic baths numerically. The effects of the period of pulses on the non-Markovian dynamics of qubits are discussed. We show the genuine multipartite entanglement and purity can be simultaneously improved by applying the bang–bang pulses with finite period. In particular, the bang–bang pulses with finite period are more efficient when the qubits are put into the sub-Ohmic or Ohmic baths than the case of the super-Ohmic bath.

[1]  O. Gühne,et al.  Robustness of multiparticle entanglement: specific entanglement classes and random states , 2013, 1310.7336.

[2]  Yixiao Huang,et al.  Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses , 2013 .

[3]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[4]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[5]  Jiangfeng Du,et al.  Noise-resilient quantum evolution steered by dynamical decoupling , 2013, Nature Communications.

[6]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[7]  Wen Yang,et al.  Preserving qubit coherence by dynamical decoupling , 2010, 1007.0623.

[8]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[9]  Jian-Song Zhang,et al.  Controlling sudden transitions of bipartite quantum correlations under dephasing via dynamical decoupling , 2014 .

[10]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[11]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[12]  V. Vedral,et al.  Mixedness and teleportation , 2000 .

[13]  Mazhar N. Ali Dynamics of genuine multipartite entanglement under local non-Markovian dephasing , 2014, 1411.1210.

[14]  T. Moroder,et al.  Taming multiparticle entanglement. , 2010, Physical review letters.

[15]  J. G. P. Faria,et al.  Aspects of the dynamics of a two-level atom dispersively coupled to a damped and driven field mode , 2004 .

[16]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[17]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[18]  Tian-Yu Ye,et al.  Quantum steganography with a large payload based on dense coding and entanglement swapping of Greenberger—Horne—Zeilinger states , 2013, 2205.01251.

[19]  C. Murphy,et al.  VEGF111: new insights in tissue invasion , 2015, Front. Physiol..

[20]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[21]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[22]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[23]  Nicolas Gisin,et al.  Detecting genuine multipartite quantum nonlocality: a simple approach and generalization to arbitrary dimensions. , 2010, Physical review letters.

[24]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[25]  Ying Wu,et al.  Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing , 2004 .

[26]  Heng Fan,et al.  Demonstration of entanglement-enhanced phase estimation in solid , 2014, Nature Communications.

[27]  Daniel A. Lidar Review of Decoherence‐Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling , 2014 .

[28]  Pochung Chen Dynamical decoupling-induced renormalization of non-Markovian dynamics , 2007 .

[29]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.