Visual Abstraction and Exploration of Multi-class Scatterplots

Scatterplots are widely used to visualize scatter dataset for exploring outliers, clusters, local trends, and correlations. Depicting multi-class scattered points within a single scatterplot view, however, may suffer from heavy overdraw, making it inefficient for data analysis. This paper presents a new visual abstraction scheme that employs a hierarchical multi-class sampling technique to show a feature-preserving simplification. To enhance the density contrast, the colors of multiple classes are optimized by taking the multi-class point distributions into account. We design a visual exploration system that supports visual inspection and quantitative analysis from different perspectives. We have applied our system to several challenging datasets, and the results demonstrate the efficiency of our approach.

[1]  David L. Kao,et al.  A New Line Integral Convolution Algorithm for Visualizing Time-Varying Flow Fields , 1998, IEEE Trans. Vis. Comput. Graph..

[2]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[3]  Jing Li,et al.  A model of symbol size discrimination in scatterplots , 2010, CHI.

[4]  Dieter Schmalstieg,et al.  Noise-Based Volume Rendering for the Visualization of Multivariate Volumetric Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[6]  Jaegul Choo,et al.  UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[8]  David F. Tate,et al.  A Novel Interface for Interactive Exploration of DTI Fibers , 2009, IEEE Transactions on Visualization and Computer Graphics.

[9]  Leland Wilkinson,et al.  Stacking Graphic Elements to Avoid Over-Plotting , 2010, IEEE Transactions on Visualization and Computer Graphics.

[10]  Xiaotong Liu,et al.  ViSizer: A Visualization Resizing Framework , 2013, IEEE Transactions on Visualization and Computer Graphics.

[11]  Robert L. Grossman,et al.  High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions , 2006, IEEE Transactions on Visualization and Computer Graphics.

[12]  Dieter Schmalstieg,et al.  Procedural Texture Synthesis for Zoom‐Independent Visualization of Multivariate Data , 2012, Comput. Graph. Forum.

[13]  Hujun Bao,et al.  Image-Space Texture-Based Output-Coherent Surface Flow Visualization. , 2013, IEEE transactions on visualization and computer graphics.

[14]  Ulrik Brandes,et al.  Interactive Level-of-Detail Rendering of Large Graphs , 2012, IEEE Transactions on Visualization and Computer Graphics.

[15]  Jarke J. van Wijk,et al.  Evaluation of symbol contrast in scatterplots , 2009, 2009 IEEE Pacific Visualization Symposium.

[16]  Li-Yi Wei Multi-class blue noise sampling , 2010, ACM Trans. Graph..

[17]  Yu-Ting Tsai,et al.  Generating Pointillism Paintings Based on Seurat's Color Composition , 2013, Comput. Graph. Forum.

[18]  Daniel A. Keim,et al.  Generalized Scatter Plots , 2010, Inf. Vis..

[19]  Hujun Bao,et al.  Image-Space Texture-Based Output-Coherent Surface Flow Visualization. , 2013, IEEE transactions on visualization and computer graphics.

[20]  Jacques Droulez,et al.  Visualization of uncertain scalar data fields using color scales and perceptually adapted noise , 2011, APGV '11.

[21]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[22]  Xiaoru Yuan,et al.  Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[23]  Heidrun Schumann,et al.  A new weaving technique for handling overlapping regions , 2010, AVI.

[24]  Daniel Weiskopf,et al.  Efficient and Adaptive Rendering of 2‐D Continuous Scatterplots , 2009, Comput. Graph. Forum.

[25]  Chris North,et al.  User Interaction with Scatterplots on Small Screens - A Comparative Evaluation of Geometric-Semantic Zoom and Fisheye Distortion , 2006 .

[26]  Steven Franconeri,et al.  Perception of Average Value in Multiclass Scatterplots , 2013, IEEE Transactions on Visualization and Computer Graphics.

[27]  Daniel A. Keim,et al.  The Gridfit algorithm: an efficient and effective approach to visualizing large amounts of spatial data , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[28]  Michael Stonebraker,et al.  Constant density visualizations of non-uniform distributions of data , 1998, UIST '98.

[29]  Huamin Wang,et al.  Bilateral blue noise sampling , 2013, ACM Trans. Graph..

[30]  Kwan-Liu Ma,et al.  Flow-based scatterplots for sensitivity analysis , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[31]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[32]  Giuseppe Santucci,et al.  Give Chance a Chance: Modeling Density to Enhance Scatter Plot Quality through Random Data Sampling , 2006, Inf. Vis..

[33]  Heidrun Schumann,et al.  Supporting Display Scalability by Redundant Mapping , 2011, ISVC.

[34]  Daniel Weiskopf,et al.  Continuous Scatterplots , 2008, IEEE Transactions on Visualization and Computer Graphics.

[35]  Kai Bürger,et al.  Direct Volume Editing , 2008, IEEE Transactions on Visualization and Computer Graphics.

[36]  Gennady L. Andrienko,et al.  Composite Density Maps for Multivariate Trajectories , 2011, IEEE Transactions on Visualization and Computer Graphics.

[37]  Xiaoru Yuan,et al.  WYSIWYG (What You See is What You Get) Volume Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[38]  B. Marx The Visual Display of Quantitative Information , 1985 .

[39]  Matthias Zwicker,et al.  Ieee Transactions on Visualization and Computer Graphics Ewa Splatting , 2002 .

[40]  M. Sheelagh T. Carpendale,et al.  Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations , 2009, IEEE Transactions on Visualization and Computer Graphics.

[41]  David Feng,et al.  Matching Visual Saliency to Confidence in Plots of Uncertain Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[42]  Jarke J. van Wijk,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Visualization of Vessel Movements , 2022 .

[43]  Victoria Interrante,et al.  Weaving versus blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color , 2006, APGV.

[44]  Baoquan Chen,et al.  Paint Inspired Color Mixing and Compositing for Visualization , 2004 .

[45]  Michael Gleicher,et al.  Splatterplots: Overcoming Overdraw in Scatter Plots , 2013, IEEE Transactions on Visualization and Computer Graphics.

[46]  Daniel A. Keim,et al.  Enhancing Scatter Plots Using Ellipsoid Pixel Placement and Shading , 2013, 2013 46th Hawaii International Conference on System Sciences.

[47]  Leland Wilkinson,et al.  TimeSeer: Scagnostics for High-Dimensional Time Series , 2013, IEEE Transactions on Visualization and Computer Graphics.