RNIE: genome-wide prediction of bacterial intrinsic terminators

Bacterial Rho-independent terminators (RITs) are important genomic landmarks involved in gene regulation and terminating gene expression. In this investigation we present RNIE, a probabilistic approach for predicting RITs. The method is based upon covariance models which have been known for many years to be the most accurate computational tools for predicting homology in structural non-coding RNAs. We show that RNIE has superior performance in model species from a spectrum of bacterial phyla. Further analysis of species where a low number of RITs were predicted revealed a highly conserved structural sequence motif enriched near the genic termini of the pathogenic Actinobacteria, Mycobacterium tuberculosis. This motif, together with classical RITs, account for up to 90% of all the significantly structured regions from the termini of M. tuberculosis genic elements. The software, predictions and alignments described below are available from http://github.com/ppgardne/RNIE.

[1]  Sean R. Eddy,et al.  A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure , 2002, BMC Bioinformatics.

[2]  M. Tomita,et al.  Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. , 1998, Nucleic acids research.

[3]  Stinus Lindgreen,et al.  WAR: Webserver for aligning structural RNAs , 2008, Nucleic Acids Res..

[4]  S. Salzberg,et al.  Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake , 2007, Genome Biology.

[5]  V. Nagaraja,et al.  Genome-wide analysis of the intrinsic terminators of transcription across the genus Mycobacterium. , 2008, Tuberculosis.

[6]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[7]  J. Mcneil,et al.  Prediction of rho-independent transcriptional terminators in Escherichia coli. , 2001, Nucleic acids research.

[8]  E. Brody,et al.  Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. , 1990 .

[9]  Satoru Miyano,et al.  Prediction of Transcriptional Terminators in Bacillus subtilis and Related Species , 2005, PLoS Comput. Biol..

[10]  R. C. Underwood,et al.  Stochastic context-free grammars for tRNA modeling. , 1994, Nucleic acids research.

[11]  Kathryn S. Lilley,et al.  The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair , 2009, Proceedings of the National Academy of Sciences.

[12]  Zasha Weinberg,et al.  Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy , 2004, ISMB/ECCB.

[13]  Leopold Parts,et al.  Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. , 2009, Genome research.

[14]  D. Gautheret,et al.  Transcription attenuation in bacteria: theme and variations. , 2009, Briefings in functional genomics & proteomics.

[15]  Samuel A. Assefa,et al.  A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi , 2009, PLoS genetics.

[16]  M. Kimmel,et al.  Conflict of interest statement. None declared. , 2010 .

[17]  A. Krogh,et al.  No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. , 1999, Nucleic acids research.

[18]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[19]  Dong Xu,et al.  Intrinsic Terminator Prediction and Its Application in Synechococcus sp. WH8102 , 2005, Journal of Computer Science and Technology.

[20]  Zasha Weinberg,et al.  Sequence-based heuristics for faster annotation of non-coding RNA families , 2006, Bioinform..

[21]  Sean R. Eddy,et al.  Local RNA structure alignment with incomplete sequence , 2009, Bioinform..

[22]  V. Nagaraja,et al.  Alternate Paradigm for Intrinsic Transcription Termination in Eubacteria* 210 , 2001, The Journal of Biological Chemistry.

[23]  Guohui Lin,et al.  Rnall: an Efficient Algorithm for Predicting Rna Local Secondary Structural Landscape in Genomes , 2006, J. Bioinform. Comput. Biol..

[24]  Manfred Kröger,et al.  Compilation of DNA sequences of Escherichia coli K12: description of the interactive databases ECD and ECDC , 1998, Nucleic Acids Res..

[25]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[26]  Ricardo Ciria,et al.  Conserved regulatory motifs in bacteria: riboswitches and beyond. , 2004, Trends in genetics : TIG.

[27]  Sean R. Eddy,et al.  Query-Dependent Banding (QDB) for Faster RNA Similarity Searches , 2007, PLoS Comput. Biol..

[28]  T. A. Krulwich,et al.  Identification of a putative Bacillus subtilis rho gene , 1993, Journal of bacteriology.

[29]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[30]  Z. Deng,et al.  sRNAscanner: A Computational Tool for Intergenic Small RNA Detection in Bacterial Genomes , 2010, PloS one.

[31]  J. Vohradský,et al.  Biocomputational prediction of small non-coding RNAs in Streptomyces , 2008, BMC Genomics.

[32]  Rolf Wagner,et al.  Transcription Regulation in Prokaryotes , 2000 .

[33]  Ying Cheng,et al.  Improvements to services at the European Nucleotide Archive , 2009, Nucleic Acids Res..

[34]  Sam Griffiths-Jones,et al.  RALEE--RNA ALignment Editor in Emacs , 2005, Bioinform..

[35]  S. Lory,et al.  Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2 , 2006, Nucleic acids research.

[36]  V. Nagaraja,et al.  Conserved economics of transcription termination in eubacteria. , 2002, Nucleic acids research.

[37]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[38]  V. Nagaraja,et al.  Occurrence, divergence and evolution of intrinsic terminators across eubacteria. , 2009, Genomics.

[39]  Zasha Weinberg,et al.  CMfinder - a covariance model based RNA motif finding algorithm , 2006, Bioinform..

[40]  R. Durbin,et al.  RNA sequence analysis using covariance models. , 1994, Nucleic acids research.

[41]  Zasha Weinberg,et al.  R2R - software to speed the depiction of aesthetic consensus RNA secondary structures , 2011, BMC Bioinformatics.