Forward‐in‐time goal‐oriented adaptivity

[1]  J. Tinsley Oden,et al.  Multi-scale goal-oriented adaptive modeling of random heterogeneous materials , 2006 .

[2]  Rolf Rannacher,et al.  ADAPTIVE FINITE ELEMENT TECHNIQUES FOR THE ACOUSTIC WAVE EQUATION , 2001 .

[3]  David Pardo,et al.  Goal-oriented adaptivity using unconventional error representations for the 1D Helmholtz equation , 2015, Comput. Math. Appl..

[4]  Victor M. Calo,et al.  An energy-stable time-integrator for phase-field models , 2017 .

[5]  E. H. van Brummelen,et al.  Duality-based two-level error estimation for time-dependent PDEs: application to linear and nonlinear parabolic equations , 2015 .

[6]  David Pardo,et al.  Goal‐oriented adaptivity using unconventional error representations for the multidimensional Helmholtz equation , 2018 .

[7]  I. Akkerman,et al.  Goal-oriented error estimation and adaptivity for fluid–structure interaction using exact linearized adjoints , 2011 .

[8]  Boris Vexler,et al.  Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..

[9]  Pedro Díez,et al.  Goal-oriented error estimation for transient parabolic problems , 2007 .

[10]  J. Tinsley Oden,et al.  Computable Error Estimators and Adaptive Techniques for Fluid Flow Problems , 2003 .

[11]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[12]  Stefan Turek,et al.  Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation , 2011, J. Num. Math..

[13]  X. Wu,et al.  A Posteriori Error Estimation and Adaptivity for Nonlinear Parabolic Equations using IMEX-Galerkin Discretization of Primal and Dual Equations , 2017, SIAM J. Sci. Comput..

[14]  Donald Estep,et al.  A posteriori error analysis of IMEX multi-step time integration methods for advection-diffusion-reaction equations , 2015 .

[15]  E. Alberdi Celaya,et al.  Solution of the Wave-type PDE by Numerical Damping Control Multistep Methods , 2014, ICCS.

[16]  Victor M. Calo,et al.  Explicit-in-time goal-oriented adaptivity , 2019, Computer Methods in Applied Mechanics and Engineering.

[17]  David Pardo,et al.  A goal‐oriented hp‐adaptive finite element method with electromagnetic applications. Part I: electrostatics , 2006 .

[18]  Victor M. Calo,et al.  Time-domain goal-oriented adaptivity using pseudo-dual error representations , 2017 .

[19]  Victor M. Calo,et al.  Variational formulations for explicit Runge-Kutta Methods , 2018, Finite Elements in Analysis and Design.

[20]  David Pardo,et al.  A self-adaptive goal-oriented hp-finite element method with electromagnetic applications. Part II: Electrodynamics , 2007 .

[21]  Carlos Torres-Verdín,et al.  Two-Dimensional High-Accuracy Simulation of Resistivity Logging-While-Drilling (LWD) Measurements Using a Self-Adaptive Goal-Oriented hp Finite Element Method , 2006, SIAM J. Appl. Math..

[22]  Rolf Rannacher,et al.  Adaptive Galerkin Finite Element Methods for the Wave Equation , 2010, Comput. Methods Appl. Math..

[23]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .