High-pressure hydrogen adsorption in clay minerals: Insights on natural hydrogen exploration

[1]  A. Derkowski,et al.  Structural and textural control of high-pressure hydrogen adsorption on expandable and non-expandable clay minerals in geologic conditions , 2022, International Journal of Hydrogen Energy.

[2]  P. Rutkowski,et al.  Application of clay minerals and their derivatives in adsorption from gaseous phase , 2021, Applied Clay Science.

[3]  R. Cygan,et al.  Advances in Clayff Molecular Simulation of Layered and Nanoporous Materials and Their Aqueous Interfaces , 2021, The Journal of Physical Chemistry C.

[4]  G. Ersland,et al.  Seasonal hydrogen storage in a depleted oil and gas field , 2021, International Journal of Hydrogen Energy.

[5]  H. Vredenburg,et al.  Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen , 2021 .

[6]  S. Iglauer,et al.  Hydrogen Adsorption on Sub‐Bituminous Coal: Implications for Hydrogen Geo‐Storage , 2021, Geophysical Research Letters.

[7]  Vei Wang,et al.  VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code , 2019, Comput. Phys. Commun..

[8]  W. Schlesinger,et al.  Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere , 2020, Proceedings of the National Academy of Sciences.

[9]  Z. Pang,et al.  Origin and evolution of hydrogen-rich gas discharges from a hot spring in the eastern coastal area of China , 2020 .

[10]  V. Zgonnik The occurrence and geoscience of natural hydrogen: A comprehensive review , 2020 .

[11]  Pengfei Zhang,et al.  1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks , 2020 .

[12]  E. Reeves,et al.  Abiotic Synthesis of Methane and Organic Compounds in Earth’s Lithosphere , 2020 .

[13]  B. Ménez Abiotic Hydrogen and Methane: Fuels for Life , 2020 .

[14]  W. Bach,et al.  Abiotic Sources of Molecular Hydrogen on Earth , 2020 .

[15]  Juan Antonio Cecilia,et al.  CO2 Adsorption of Materials Synthesized from Clay Minerals: A Review , 2019, Minerals.

[16]  R. Tarkowski,et al.  Underground hydrogen storage: Characteristics and prospects , 2019, Renewable and Sustainable Energy Reviews.

[17]  Xiaofeng Wang,et al.  Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas , 2019, Earth-Science Reviews.

[18]  B. Ménez,et al.  Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere , 2018, Nature.

[19]  A. Prinzhofer,et al.  Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali) , 2018, International Journal of Hydrogen Energy.

[20]  M. Cathelineau,et al.  Clay minerals trap hydrogen in the Earth's crust: Evidence from the Cigar Lake uranium deposit, Athabasca , 2018, Earth and Planetary Science Letters.

[21]  Diego A. Gómez-Gualdrón,et al.  Benchmark Study of Hydrogen Storage in Metal-Organic Frameworks under Temperature and Pressure Swing Conditions , 2018 .

[22]  David Dubbeldam,et al.  iRASPA: GPU-accelerated visualization software for materials scientists , 2018 .

[23]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[24]  Wenxuan Hu,et al.  Effects of Deep Fluids on Hydrocarbon Generation and Accumulation in Chinese Petroliferous Basins , 2017 .

[25]  T. Jerzykiewicz,et al.  On generating a geological model for hydrogen gas in the southern Taoudeni Megabasin (Bourakebougou area, Mali) , 2016 .

[26]  R. Snurr,et al.  RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials , 2016 .

[27]  T. Onstott,et al.  The contribution of the Precambrian continental lithosphere to global H2 production , 2014, Nature.

[28]  Bernhard M. Krooss,et al.  Geological controls on the methane storage capacity in organic-rich shales , 2014 .

[29]  Chengshan Wang,et al.  Continental Scientific Drilling Project of Cretaceous Songliao Basin: Scientific objectives and drilling technology , 2013 .

[30]  Quanyou Liu Mercury concentration in natural gas and its distribution in the Tarim Basin , 2013, Science China Earth Sciences.

[31]  Tongwei Zhang,et al.  Experimental investigation of main controls to methane adsorption in clay-rich rocks , 2012 .

[32]  David S Sholl,et al.  Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing the Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials. , 2012, Journal of chemical theory and computation.

[33]  Tongwei Zhang,et al.  Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems , 2012 .

[34]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[35]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[36]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[37]  Zahira Yaakob,et al.  Solid-state Materials and Methods for Hydrogen Storage: A Critical Review , 2010 .

[38]  Q. Sun,et al.  Electric field enhanced hydrogen storage on polarizable materials substrates , 2010, Proceedings of the National Academy of Sciences.

[39]  M. Wietschel,et al.  The future of hydrogen : opportunities and challenges , 2009 .

[40]  Mariette Hellenbrandt,et al.  The Inorganic Crystal Structure Database (ICSD)—Present and Future , 2004 .

[41]  W. Seyfried,et al.  Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400°C, 500 bars , 2003 .

[42]  R. Downs,et al.  The American Mineralogist crystal structure database , 2003 .

[43]  Alan L. Myers,et al.  Adsorption in Porous Materials at High Pressure: Theory and Experiment , 2002 .

[44]  J. Zeng,et al.  Multi-origin alkanes related to CO2-rich, mantle-derived fluid in Dongying Sag, Bohai Bay Basin , 2002 .

[45]  Dirk Mallants,et al.  Gas generation and migration in Boom Clay, a potential host rock formation for nuclear waste storage , 2002 .

[46]  Debabrata Das,et al.  Hydrogen production by biological processes: a survey of literature , 2001 .

[47]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[48]  D. Lévesque,et al.  Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes , 1998 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[51]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[52]  J. Böhlke,et al.  Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines , 1990 .

[53]  R. Coveney,et al.  Serpentinization and the Origin of Hydrogen Gas in Kansas , 1987 .

[54]  H. Craig,et al.  Methane and hydrogen in East Pacific Rise hydrothermal fluids , 1979 .

[55]  R. T. Martin ADSORBED WATER ON CLAY: A REVIEW , 1960 .