<jats:p>We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math> be an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>m</mml:mi></mml:math>-bit Boolean function and consider an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-bit function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>F</mml:mi></mml:math> obtained by applying <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math> to conjunctions of possibly overlapping subsets of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> variables. If <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math> has quantum query complexity <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>, we give an algorithm for evaluating <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>F</mml:mi></mml:math> using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mover><mml:mi>O</mml:mi><mml:mo stretchy="false">~</mml:mo></mml:mover></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msqrt><mml:mi>Q</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>⋅</mml:mo><mml:mi>n</mml:mi></mml:msqrt><mml:mo stretchy="false">)</mml:mo></mml:math> quantum queries. This improves on the bound of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>Q</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>⋅</mml:mo><mml:msqrt><mml:mi>n</mml:mi></mml:msqrt><mml:mo stretchy="false">)</mml:mo></mml:math> that follows by treating each conjunction independently, and our bound is tight for worst-case choices of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math>. Using completely different techniques, we prove a similar tight composition theorem for the approximate degree of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math>.By recursively applying our composition theorems, we obtain a nearly optimal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mover><mml:mi>O</mml:mi><mml:mo stretchy="false">~</mml:mo></mml:mover></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−</mml:mo><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> upper bound on the quantum query complexity and approximate degree of linear-size depth-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi></mml:math> AC<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi /><mml:mn>0</mml:mn></mml:msup></mml:math> circuits. As a consequence, such circuits can be PAC learned in subexponential time, even in the challenging agnostic setting. Prior to our work, a subexponential-time algorithm was not known even for linear-size depth-3 AC<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi /><mml:mn>0</mml:mn></mml:msup></mml:math> circuits.As an additional consequence, we show that AC<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi /><mml:mn>0</mml:mn></mml:msup><mml:mo>∘</mml:mo><mml:mo>⊕</mml:mo></mml:math> circuits of depth <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math> require size <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mover><mml:mi mathvariant="normal">Ω</mml:mi><mml:mo stretchy="false">~</mml:mo></mml:mover></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>1</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−</mml:mo><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mo>≥</mml:mo><mml:mi>ω</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−</mml:mo><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> to compute the Inner Product function even on average. The previous best size lower bound was <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Ω</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:msup><mml:mn>4</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>−</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>d</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> and only held in the worst case (Cheraghchi et al., JCSS 2018).</jats:p>
[1]
Ronald de Wolf,et al.
Bounds for small-error and zero-error quantum algorithms
,
1999,
40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[2]
Rocco A. Servedio,et al.
Learning DNF in time 2Õ(n1/3)
,
2004,
J. Comput. Syst. Sci..
[3]
Rahul Santhanam,et al.
On the Limits of Sparsification
,
2012,
ICALP.
[4]
Alexander A. Razborov,et al.
The Sign-Rank of AC0
,
2010,
SIAM J. Comput..
[5]
Peter L. Bartlett,et al.
On efficient agnostic learning of linear combinations of basis functions
,
1995,
COLT '95.
[6]
Andrew M. Childs,et al.
Discrete-Query Quantum Algorithm for NAND Trees
,
2009,
Theory Comput..
[7]
Ben Reichardt,et al.
Reflections for quantum query algorithms
,
2010,
SODA '11.
[8]
Andris Ambainis,et al.
Any AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer
,
2010,
SIAM J. Comput..
[9]
Linda Sellie,et al.
Toward efficient agnostic learning
,
1992,
Annual Conference Computational Learning Theory.
[10]
Alexander A. Sherstov.
Algorithmic polynomials
,
2018,
Electron. Colloquium Comput. Complex..
[11]
Gil Cohen,et al.
The Complexity of DNF of Parities
,
2016,
Electron. Colloquium Comput. Complex..
[12]
Adam Bouland,et al.
On the Power of Statistical Zero Knowledge
,
2016,
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[13]
Ronald de Wolf,et al.
Robust Polynomials and Quantum Algorithms
,
2003,
Theory of Computing Systems.
[14]
Alexander A. Sherstov.
Making polynomials robust to noise
,
2012,
Symposium on the Theory of Computing.
[15]
Justin Thaler,et al.
The polynomial method strikes back: tight quantum query bounds via dual polynomials
,
2017,
Electron. Colloquium Comput. Complex..
[16]
Lov K. Grover.
A fast quantum mechanical algorithm for database search
,
1996,
STOC '96.
[17]
Avi Wigderson,et al.
Linear-Size Constant-Depth Polylog-Treshold Circuits
,
1991,
Inf. Process. Lett..
[18]
Rocco A. Servedio,et al.
Agnostically learning halfspaces
,
2005,
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[19]
Alexander A. Sherstov.
The Intersection of Two Halfspaces Has High Threshold Degree
,
2009,
2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[20]
Andrew M. Childs,et al.
The Quantum Query Complexity of Read-Many Formulas
,
2012,
ESA.
[21]
Ronald de Wolf,et al.
Quantum lower bounds by polynomials
,
2001,
JACM.
[22]
Mark Bun,et al.
Guest Column
,
2020,
SIGACT News.
[23]
Alexander A. Sherstov.
Strong direct product theorems for quantum communication and query complexity
,
2010,
STOC '11.
[24]
Justin Thaler,et al.
Quantum algorithms and approximating polynomials for composed functions with shared inputs
,
2018,
Electron. Colloquium Comput. Complex..
[25]
Edward Farhi,et al.
A Quantum Algorithm for the Hamiltonian NAND Tree
,
2008,
Theory Comput..
[26]
Troy Lee,et al.
Lower Bounds in Communication Complexity
,
2009,
Found. Trends Theor. Comput. Sci..
[27]
Russell Impagliazzo,et al.
The Complexity of Satisfiability of Small Depth Circuits
,
2009,
IWPEC.
[28]
Alexander A. Sherstov.
The Pattern Matrix Method
,
2009,
SIAM J. Comput..
[29]
Leslie G. Valiant,et al.
A theory of the learnable
,
1984,
CACM.
[30]
Jehoshua Bruck,et al.
Polynomial threshold functions, AC functions and spectrum norms
,
1990,
Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[31]
Alon Rosen,et al.
Candidate weak pseudorandom functions in AC0 ○ MOD2
,
2014,
ITCS.
[32]
Avishay Tal,et al.
Formula lower bounds via the quantum method
,
2017,
STOC.
[33]
Michal Koucký,et al.
Circuit Complexity of Regular Languages
,
2007,
Theory of Computing Systems.
[34]
Troy Lee,et al.
Negative weights make adversaries stronger
,
2007,
STOC '07.
[35]
Jaikumar Radhakrishnan,et al.
Deterministic restrictions in circuit complexity
,
1996,
STOC '96.
[36]
Michael Ben-Or,et al.
A theorem on probabilistic constant depth Computations
,
1984,
STOC '84.