Structure and Chemistry in Halide Lead–Tellurite Glasses

A series of TeO2–PbO glasses were fabricated with increasing fractions of mixed alkali, alkaline earth, and lanthanide chlorides. The glass and crystal structure was studied with Raman spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction, and electron microscopy. As the chloride fraction increased, the medium-range order in the glass decreased up to a critical point (∼14 mass% of mixed chlorides), above which the glasses became phase-separated. Resulting phases were a TeO2/PbO-rich phase and a crystalline phase rich in alkali chlorides. Contrary to previous studies, the 125Te NMR indicates that the Te site distribution did not change with increased concentrations of M+, M2+, and M3+ cations, but rather is controlled by the Te/Pb molar ratio. The 207Pb NMR shows that two Pb species exist and their relative concentration changes monotonically with the addition of mixed chlorides, indicating that the additives to the TeO2–PbO glass are accommodated by changing the Pb species. The 23Na and 35Cl N...

[1]  Tokuro Nanba,et al.  Coordination change of Te atoms in binary tellurite glasses , 1994 .

[2]  Kathleen Richardson,et al.  Tellurite and Fluorotellurite Glasses for Fiberoptic Raman Amplifiers: Glass Characterization, Optical Properties, Raman Gain, Preliminary Fiberization, and Fiber Characterization* , 2007 .

[3]  Mauricio A. P. Silva,et al.  Structural studies on TeO2–PbO glasses , 2001 .

[4]  T. Yoko,et al.  125Te NMR Study of MO-TeO2 (M=Mg, Zn, Sr, Ba and Pb) Glasses , 1999 .

[5]  G. Sigel,et al.  Spectroscopic Analysis of the Structure and Properties of Alkali Tellurite Glasses , 1992 .

[6]  Hideki Yamamoto,et al.  X-ray absorption fine structure (XAFS) study on the coordination of Te in PbOTiO2TeO2 glasses with high third-order optical non-linearity , 1994 .

[7]  John D. Vienna,et al.  Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results , 2010 .

[8]  P. Lukas,et al.  Structural study of complex tellurite glasses , 1995 .

[9]  V. Kozhukharov,et al.  A model for structural recombination in tellurite glasses , 1979 .

[10]  N. Ohtori,et al.  High-temperature structure of K2O–TeO2 glasses , 1999 .

[11]  P. Halasyamani,et al.  Syntheses, structures, and characterization of new lead(II)-tellurium(IV)-oxide halides: Pb3Te2O6X2 and Pb3TeO4X2 (X = Cl or Br). , 2003, Inorganic chemistry.

[12]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[13]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[14]  Y. Dimitriev,et al.  Study on the structural transition in binary tellurite glasses by means of reduced infrared spectra , 2001 .

[15]  M. A. Lewis,et al.  Development of a method for monitoring the consistency of glass-bonded sodalite waste forms. , 2000 .

[16]  M. I. Ojovan,et al.  Immobilisation of radioactive waste in glasses, glass composite materials and ceramics , 2006 .

[17]  John D. Vienna,et al.  Nuclear Waste Vitrification in the United States: Recent Developments and Future Options , 2010 .

[18]  John S. McCloy,et al.  Optical Basicity and Nepheline Crystallization in High Alumina Glasses , 2011 .

[19]  A. Lipton,et al.  A general strategy for the NMR observation of half-integer quadrupolar nuclei in dilute environments. , 2001, Journal of magnetic resonance.

[20]  A. Lipton,et al.  67ZN QCPMG SOLID-STATE NMR STUDIES OF ZINC COMPLEXES AS MODELS FOR METALLOPROTEINS , 1999 .

[21]  M. Villegas,et al.  Characterisation of glasses in the TeO2–WO3–PbO system , 2009 .

[22]  V. Kozhukharov,et al.  Atomic arrangement in tellurite glasses studied by neutron diffraction , 1978 .

[23]  T. Yoko,et al.  Part 2.125Te NMR study of M2O–TeO2 (M=Li, Na, K, Rb and Cs) glasses , 1999 .

[24]  J. Sanz,et al.  Influence of ion distribution on the ionic conductivity of lithium tellurite glasses (Li2OTeO2 and LiFTeO2) , 1990 .

[25]  John S. McCloy,et al.  Solution-Derived, Chloride-Containing Minerals as a Waste Form for Alkali Chlorides , 2012 .

[26]  D. Holland,et al.  A 125Te and 23Na NMR investigation of the structure and crystallisation of sodium tellurite glasses. , 2005, Solid state nuclear magnetic resonance.

[27]  T. Sekiya,et al.  Raman spectra of MOTeO2 (M = Mg, Sr, Ba and Zn) glasses , 1994 .

[28]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[29]  K. J. Rao,et al.  Li+ ion conductivities in boro-tellurite glasses , 2004 .

[30]  T. Yoko,et al.  125Te, 27Al, and 71Ga NMR Study of M2O3–TeO2 (M = Al and Ga) Glasses , 2001 .

[31]  V. Kozhukharov,et al.  Atomic arrangement of a zinc-tellurite glass , 1986 .

[32]  G. Özen,et al.  Raman characterizations and structural properties of the binary TeO2WO3, TeO2CdF2 and ternary TeO2CdF2WO3 glasses , 2010 .

[33]  S. Ogawa,et al.  Structural study of WO3TeO2 glasses , 1994 .

[34]  G. Brady Structure of Tellurium Oxide Glass , 1957 .

[35]  John D. Vienna,et al.  Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing , 2012 .

[36]  T. Nishida,et al.  Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses , 1990 .

[37]  D. Ležal,et al.  Raman spectra of TeO2-PbCl2 glasses , 2002 .

[38]  T. Sekiya,et al.  Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses , 1992 .

[39]  E. Culea,et al.  FTIR and UV–VIS spectroscopy investigations on the structure of the europium–lead–tellurate glasses , 2011 .

[40]  K. Kneipp,et al.  Glass formation, properties and structure of glasses in the TeO2ZnO system , 1992 .

[41]  V. O. Sokolov,et al.  Structure of barium chloride-oxide tellurite glasses , 2009 .

[42]  G. Özen,et al.  Microstructure and crystallization properties of TeO2PbF2 glasses , 2009 .

[43]  S. Sen,et al.  125Te NMR chemical shifts and tellurium coordination environments in crystals and glasses in the Ge―As―Sb―Te system , 2011 .

[44]  Zhong-hong Jiang,et al.  Upconversion luminescence of Tm3+/Yb3+-codoped oxyhalide tellurite glasses , 2005 .

[45]  A. Lipton,et al.  Solid-state (67)zn NMR spectroscopy in bioinorganic chemistry. Spectra of four- and six-coordinate zinc pyrazolylborate complexes obtained by management of proton relaxation rates with a paramagnetic dopant. , 2002, Journal of the American Chemical Society.

[46]  Masaaki Kobayashi,et al.  Scintillation from Eu2+ in Nanocrystallized Glass , 2009 .

[47]  T. Yoko,et al.  Part 1. 125Te NMR study of tellurite crystals , 1999 .

[48]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[49]  N. Nielsen,et al.  Sensitivity-Enhanced Quadrupolar-Echo NMR of Half-Integer Quadrupolar Nuclei. Magnitudes and Relative Orientation of Chemical Shielding and Quadrupolar Coupling Tensors , 1997 .

[50]  Hansoo Lee,et al.  PYROPROCESSING TECHNOLOGY DEVELOPMENT AT KAERI , 2011 .

[51]  T. Hattori,et al.  X-ray diffraction study of the short-range structure of LiCl–Li2O–TeO2 glasses , 2000 .

[52]  K. L. Tan,et al.  Characterization of xCuI·(50−x)AgI·yCu2MoO4·(50−y)CuPO3 glasses , 1998 .

[53]  Takenobu Suzuki,et al.  Raman characteristics and nonlinear optical properties of tellurite and phosphotellurite glasses containing heavy metal oxides with ultrabroad Raman bands , 2006 .

[54]  G. S. Murugan,et al.  Phospho-tellurite glasses containing heavy metal oxides for ultrabroad band fiber Raman amplifiers , 2005 .

[55]  V. Kozhukharov,et al.  Neutron diffraction investigation of the short range order in TeO2BiCl3 glassy system , 1990 .

[56]  R. Jagannathan,et al.  Tb3+ fluorescence as a probe of cluster formation in lead oxyfluoride glasses , 1995 .

[57]  Sylvia Turrell,et al.  Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses , 1997 .

[58]  Y. Dimitriev,et al.  Effect of the mode formation on the structure of tellurite glasses , 1987 .

[59]  K. J. Rao,et al.  Investigation of lithium chloride-lithium borate-tellurium dioxide glasses : an example of complex anionic speciation , 2001 .

[60]  B. Chowdari,et al.  Raman spectroscopic study of ternary silver tellurite glasses , 1999 .

[61]  T. Komatsu,et al.  Raman scattering spectra and optical properties of tellurite glasses and crystalline phases containing PbO and CdO , 1999 .

[62]  F. Fayon,et al.  and NMR and XPS characterization of PbO–PbCl2–CdCl2 glasses , 2001 .

[63]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[64]  A. Hrubý Evaluation of glass-forming tendency by means of DTA , 1972 .

[65]  T. Sekiya,et al.  Raman spectra of binary tellurite glasses containing tri- or tetra-valent cations , 1995 .

[66]  F. Fayon,et al.  Empirical Correlations between 207Pb NMR Chemical Shifts and Structure in Solids , 1997 .

[67]  B. Chowdari,et al.  Synthesis and characterization of Cu2O·TeO2 and CuI·Cu2O·TeO2 glasses , 2000 .

[68]  Katsuhisa Tanaka,et al.  Structure and ionic conductivity of LiClLi2OTeO2 glasses , 1988 .

[69]  Y. Dimitriev,et al.  Infrared-spectral investigation of tellurites , 1982 .

[70]  A. N. Garroway Homogeneous and inhomogeneous nuclear spin echoes in organic solids: Adamantane , 1977 .

[71]  V. Sathe,et al.  Preparation and characterization of lead and zinc tellurite glasses , 2010 .

[72]  S. Inoue,et al.  EXAFS and RDF studies of TeO_2–Li_2O glasses , 1995 .