The geochemical nature of mantle sources for two types of Cretaceous basaltic rocks from Luxi and Jiaodong in east-central China

[1]  Yong‐Fei Zheng Subduction zone geochemistry , 2019, Geoscience Frontiers.

[2]  Yong‐Fei Zheng,et al.  Ultrahigh-pressure metamorphic rocks in the Dabie–Sulu orogenic belt: compositional inheritance and metamorphic modification , 2018, Special Publications.

[3]  Yong‐Fei Zheng,et al.  Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere , 2018, Science China Earth Sciences.

[4]  B. Wood,et al.  The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts , 2017 .

[5]  Yong‐Fei Zheng,et al.  Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabie orogen , 2017 .

[6]  Yong‐Fei Zheng,et al.  Slab–Mantle Interaction in the Petrogenesis of Andesitic Magmas: Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China , 2016 .

[7]  S. Pilet Generation of low-silica alkaline lavas: Petrological constraints, models, and thermal implications , 2015 .

[8]  Yong‐Fei Zheng,et al.  Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction , 2013, Scientific Reports.

[9]  J. Beckett,et al.  The Temperature and Pressure Dependence of Nickel Partitioning between Olivine and Silicate Melt , 2013 .

[10]  Yong‐Fei Zheng,et al.  Continental subduction channel processes: Plate interface interaction during continental collision , 2013 .

[11]  M. Hirschmann,et al.  The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle , 2013, Contributions to Mineralogy and Petrology.

[12]  F. Guo,et al.  Crustal recycling processes in generating the early Cretaceous Fangcheng basalts, North China Craton: New constraints from mineral chemistry, oxygen isotopes of olivine and whole-rock geochemistry , 2013 .

[13]  I. Kushiro Partial melting of a fertile mantle peridotite at high pressures : An experimental study using aggregates of diamond , 2013 .

[14]  M. Hirschmann,et al.  Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa , 2013 .

[15]  D. Laporte,et al.  Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints , 2013 .

[16]  D. Jacob,et al.  Minor and trace elements in olivines as probes into early igneous and mantle melting processes , 2013 .

[17]  Yong‐Fei Zheng,et al.  Slab–mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China , 2012 .

[18]  Yong‐Fei Zheng,et al.  Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen , 2012 .

[19]  Yong‐Fei Zheng Metamorphic chemical geodynamics in continental subduction zones , 2012 .

[20]  R. Dasgupta,et al.  Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts , 2012 .

[21]  Wenliang Xu,et al.  Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr–Nd–Pb isotopes in Mesozoic mafic igneous rocks , 2012 .

[22]  A. Provost,et al.  Fate of Pyroxenite-derived Melts in the Peridotitic Mantle: Thermodynamic and Experimental Constraints , 2012 .

[23]  T. Plank,et al.  The Hf–Nd isotopic composition of marine sediments , 2011 .

[24]  P. Asimow,et al.  Manganese partitioning during hydrous melting of peridotite , 2011 .

[25]  M. Hirschmann,et al.  The composition of the incipient partial melt of garnet peridotite at 3GPa and the origin of OIB , 2011 .

[26]  Yong‐Fei Zheng,et al.  Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision , 2011 .

[27]  Cin-Ty A. Lee,et al.  Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting , 2011 .

[28]  C. Herzberg Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins , 2011 .

[29]  E. Ripley,et al.  The relative effects of composition and temperature on olivine-liquid Ni partitioning: Statistical deconvolution and implications for petrologic modeling , 2010 .

[30]  Cin-Ty A. Lee,et al.  Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle , 2010 .

[31]  Yue-heng Yang,et al.  Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS , 2010 .

[32]  A. Sobolev,et al.  Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: A mixed-up mantle , 2009 .

[33]  P. Asimow,et al.  Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation , 2008 .

[34]  Yong‐Fei Zheng,et al.  Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China , 2008 .

[35]  R. Walker,et al.  Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton , 2008 .

[36]  Hong‐fu Zhang,et al.  Contribution of subducted Pacific slab to Late Cretaceous mafic magmatism in Qingdao region, China: A petrological record , 2008 .

[37]  Zhengrong Wang,et al.  Partitioning of Ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts , 2008 .

[38]  E. Stolper,et al.  Metasomatized Lithosphere and the Origin of Alkaline Lavas , 2008, Science.

[39]  P. Kelemen,et al.  Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton , 2008 .

[40]  R. Müller,et al.  Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics , 2008, Science.

[41]  S. Goldstein,et al.  Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts , 2008 .

[42]  S. O’Reilly,et al.  Amphiboles from suprasubduction and intraplate lithospheric mantle , 2007 .

[43]  M. Hirschmann,et al.  Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts , 2007 .

[44]  Yong‐Fei Zheng,et al.  TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet , 2007 .

[45]  A. Sobolev,et al.  The Amount of Recycled Crust in Sources of Mantle-Derived Melts , 2007, Science.

[46]  Tetsu Kogiso,et al.  Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts , 2006 .

[47]  Hong‐fu Zhang,et al.  Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China , 2006 .

[48]  S. Wilde,et al.  Nature and significance of the Early Cretaceous giant igneous event in eastern China , 2005 .

[49]  A. Sobolev,et al.  An olivine-free mantle source of Hawaiian shield basalts , 2005, Nature.

[50]  S. Wilde,et al.  Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited , 2005 .

[51]  Cin-Ty A. Lee Are Earth's Core and Mantle on Speaking Terms? , 2004, Science.

[52]  M. Norman,et al.  Geochemical Evidence for Excess Iron in the Mantle Beneath Hawaii , 2004, Science.

[53]  Y. Fei,et al.  High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts , 2004 .

[54]  M. Hirschmann,et al.  High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts , 2003 .

[55]  M. Hirschmann,et al.  Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa , 2003 .

[56]  F. Hauff,et al.  Sr‐Nd‐Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu‐Bonin‐Mariana subduction system , 2003 .

[57]  C. Chopin Ultrahigh-pressure metamorphism: tracing continental crust into the mantle , 2003 .

[58]  Yong‐Fei Zheng,et al.  Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie–Sulu orogen in China: implications for geodynamics and fluid regime , 2003 .

[59]  M. Hirschmann,et al.  Alkalic magmas generated by partial melting of garnet pyroxenite , 2003 .

[60]  Yaoling Niu,et al.  Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations , 2003 .

[61]  W. Fan,et al.  Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts , 2002 .

[62]  T. Spell,et al.  Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China , 2002 .

[63]  W. Griffin,et al.  Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes , 2002 .

[64]  Peter A. Cawood,et al.  Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution , 2001 .

[65]  D. Mattey,et al.  Oxygen isotope geochemistry of lavas from an oceanic to continental arc transition, Kermadec–Hikurangi margin, SW Pacific , 1998 .

[66]  G. Gaetani,et al.  The influence of water on melting of mantle peridotite , 1998 .

[67]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[68]  H. Craig,et al.  Oxygen isotope evidence against bulk recycled sediment in the mantle sources of Pitcairn Island lavas , 1995, Nature.

[69]  K. Condie,et al.  Evolution of the Kaapvaal Craton as viewed from geochemical and SmNd isotopic analyses of intracratonic pelites , 1995 .

[70]  W. McDonough,et al.  The composition of the Earth , 1995 .

[71]  Yong‐Fei Zheng “Calculation of oxygen isotope fractionation in anhydrous silicate minerals.” Geochimica et Cosmochimica Acta , 1993 .

[72]  Zheng Yong-fei,et al.  Calculation of oxygen isotope fractionation in anhydrous silicate minerals , 1993 .

[73]  K. Hirose,et al.  Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond , 1993 .

[74]  A. Nutman,et al.  Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton , 1992 .

[75]  B. Weaver The origin of ocean island basalt end-member compositions: trace element and isotopic constraints , 1991 .

[76]  A. E. Ringwood,et al.  Slab-mantle interactions , 1989 .

[77]  D. J. Schulze,et al.  Constraints on the abundance of eclogite in the upper mantle , 1989 .

[78]  J. Farver Oxygen self-diffusion in diopside with application to cooling rate determinations , 1989 .

[79]  D. Green,et al.  Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kb and Application to Basalt Petrogenesis , 1988 .

[80]  E. Ito,et al.  The O, Sr, Nd and Pb isotope geochemistry of MORB , 1987 .

[81]  J. Macdougall,et al.  Sr and Nd isotopes in basalts from the East Pacific Rise: significance for mantle heterogeneity , 1986 .

[82]  P. W. Gast Trace element fractionation and the origin of tholeiitic and alkaline magma types , 1968 .

[83]  A. E. Ringwood,et al.  The genesis of basaltic magmas , 1967 .

[84]  A. E. Ringwood,et al.  Mineral assemblages in a model mantle composition , 1963 .

[85]  Yong‐Fei Zheng,et al.  Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks , 2016 .

[86]  M. Santosh,et al.  Metallogeny and craton destruction: Records from the North China Craton , 2014 .

[87]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[88]  Albrecht W. Hofmann,et al.  3.3 – Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements , 2014 .

[89]  N. Arndt,et al.  Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array , 2008 .

[90]  J. Yan,et al.  Studies on petrology and geochernistry of the Later Cretaceous basalts and mantle-derived xenoliths from eastern Shandong. , 2005 .

[91]  Y. Niu Generation and Evolution of Basaltic Magmas: Some Basic Concepts and a New View on the Origin of Mesozoic-Cenozoic Basaltic Volcanism in Eastern China , 2005 .

[92]  R. W. Le Maitre,et al.  Igneous Rocks: A Classification and Glossary of Terms , 2002 .

[93]  W. Griffin,et al.  The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites , 2000 .

[94]  M. Menzies,et al.  Oxygen isotopic composition of hydrous and anhydrous mantle peridotites , 1997 .

[95]  S. Eggins,et al.  Subduction zone magmatism , 1995 .

[96]  M. Menzies,et al.  Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China , 1993, Geological Society, London, Special Publications.

[97]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.