언어발달지체아동과 일반아동의 시제 표지 이해 및 산출 특성
暂无分享,去创建一个
[1] Sergey Fomin,et al. Generalized cluster complexes and Coxeter combinatorics , 2005, math/0505085.
[2] H. Asashiba. On a Lift of an Individual Stable Equivalence to a Standard Derived Equivalence for Representation-Finite Self-injective Algebras , 2003 .
[3] Generalized cluster complexes via quiver representations , 2006, math/0607155.
[4] Bernard Leclerc,et al. Cluster algebras , 2014, Proceedings of the National Academy of Sciences.
[5] K. Erdmann,et al. The stable Calabi-Yau dimension of tame symmetric algebras , 2006 .
[6] T. Holm,et al. Cluster categories, selfinjective algebras, and stable Calabi-Yau dimensions: types D and E , 2006, math/0612451.
[7] Defining an m-cluster category , 2006, math/0607173.
[8] J. Białkowski,et al. Calabi-Yau stable module categories of finite type , 2007 .
[9] Idun Reiten,et al. Noetherian hereditary abelian categories satisfying Serre duality , 2002 .
[10] Ralf Schiffler,et al. Quivers with relations arising from clusters $(A_n$ case) , 2004 .
[11] Тимофеев,et al. Модели и методы многокритериальной оптимизации альтернатив , 2014 .
[12] Amnon Yekutieli,et al. Derived Picard Groups of Finite-Dimensional Hereditary Algebras , 1999, Compositio Mathematica.
[13] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[14] On triangulated orbit categories , 2005, math/0503240.
[15] K. Erdmann,et al. Twisted Bimodules and Hochschild Cohomology for Self-injective Algebras of Class An, II , 2002 .
[16] Tilting theory and cluster combinatorics , 2004, math/0402054.
[17] D. Simson,et al. Elements of the Representation Theory of Associative Algebras , 2007 .
[18] Dieter Happel,et al. On the derived category of a finite-dimensional algebra , 1987 .
[19] A. Skowroński. Selfinjective algebras: finite and tame type , 2006 .
[20] I. Reiten. Cluster categories , 2010, 1012.4949.
[21] B. Keller. Acyclic Calabi-Yau categories are cluster categories , 2006 .
[22] K. Erdmann,et al. Twisted bimodules and Hochschild cohomology for self-injective algebras of class An , 1999 .
[23] O. Iyama. Mutations in triangulated categories and rigid Cohen-Macaulay modules , 2006 .
[24] A. Skowroński. Trends in Representation Theory of Algebras and Related Topics , 2008 .
[25] Osamu Iyama,et al. Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories , 2004, math/0407052.