Multiscale Asymptotic Analysis and Computation of Optimal Control for Elliptic Systems with Constraints

This paper reports the multiscale analysis and numerical algorithms for a class of distributed elliptic optimal control problems with constraints. Multiscale asymptotic expansions are presented, and an explicit rate of convergence is derived. A multiscale numerical method is developed. Numerical experiments are carried out to validate the predicted convergence results.

[1]  Wenbin Liu,et al.  Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41 , 2008 .

[2]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[3]  M. Vogelius,et al.  Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients , 2000 .

[4]  N. Yan Superconvergence analysis and a posteriori error estimation of a finite element method for an optimal control problem governed by integral equations , 2009 .

[5]  L. Cao,et al.  Multiscale asymptotic method of optimal control on the boundary for heat equations of composite materials , 2008 .

[6]  O. Oleinik,et al.  Mathematical Problems in Elasticity and Homogenization , 2012 .

[7]  Jun-zhi Cui,et al.  Multiscale Asymptotic Analysis and Numerical Simulation for the Second Order Helmholtz Equations with Rapidly Oscillating Coefficients Over General Convex Domains , 2002, SIAM J. Numer. Anal..

[8]  H. Zoubairi Optimal control and homogenization in a mixture of uids separated by a rapidly oscillating interface , 2002 .

[9]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[10]  Axel Osses,et al.  On the controllability of the Laplace equation observed on an interior curve , 1998 .

[11]  Li-qun Cao ASYMPTOTIC EXPANSION AND CONVERGENCE THEOREM OF CONTROL AND OBSERVATION ON THE BOUNDARY FOR SECOND-ORDER ELLIPTIC EQUATION WITH HIGHLY OSCILLATORY COEFFICIENTS , 2004 .

[12]  S. Kesavan,et al.  Optimal Control on Perforated Domains , 1999 .

[13]  S. Kesavan,et al.  Homogenization of an Optimal Control Problem , 1997 .

[14]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[15]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[16]  Louis Nirenberg,et al.  Estimates for elliptic systems from composite material , 2003 .

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[18]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[19]  Jean-Pierre Puel,et al.  Approximate controllability of the semilinear heat equation , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[21]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[22]  J. L. Lions,et al.  INTRODUCTION TO “REMARKS ON THE THEORY OF OPTIMAL CONTROL OF DISTRIBUTED SYSTEMS” , 1977 .

[23]  Grégoire Allaire,et al.  Boundary layer tails in periodic homogenization , 1999 .

[24]  G. Burton Sobolev Spaces , 2013 .

[25]  W. Marsden I and J , 2012 .

[26]  P. Donato,et al.  An introduction to homogenization , 2000 .

[27]  Doina Cioranescu,et al.  Homogenization of Quasiconvex Integrals via the Periodic Unfolding Method , 2006, SIAM J. Math. Anal..