Charge carriers in rechargeable batteries: Na ions vs. Li ions

We discuss the similarities and dissimilarities of sodium- and lithium-ion batteries in terms of negative and positive electrodes. Compared to the comprehensive body of work on lithium-ion batteries, research on sodium-ion batteries is still at the germination stage. Since both sodium and lithium are alkali metals, they share similar chemical properties including ionicity, electronegativity and electrochemical reactivity. They accordingly have comparable synthetic protocols and electrochemical performances, which indicates that sodium-ion batteries can be successfully developed based on previously applied approaches or methods in the lithium counterpart. The electrode materials in Li-ion batteries provide the best library for research on Na-ion batteries because many Na-ion insertion hosts have their roots in Li-ion insertion hosts. However, the larger size and different bonding characteristics of sodium ions influence the thermodynamic and/or kinetic properties of sodium-ion batteries, which leads to unexpected behaviour in electrochemical performance and reaction mechanism, compared to lithium-ion batteries. This perspective provides a comparative overview of the major developments in the area of positive and negative electrode materials in both Li-ion and Na-ion batteries in the past decade. Highlighted are concepts in solid state chemistry and electrochemistry that have provided new opportunities for tailored design that can be extended to many different electrode materials for sodium-ion batteries.

[1]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[2]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[3]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[4]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[5]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[6]  Min Gyu Kim,et al.  Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries , 2010 .

[7]  Hansu Kim,et al.  Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries , 2001 .

[8]  Haegyeom Kim,et al.  Neutron and X-ray Diffraction Study of Pyrophosphate-Based Li2–xMP2O7 (M = Fe, Co) for Lithium Rechargeable Battery Electrodes , 2011 .

[9]  DiVincenzo Dp,et al.  Cohesion and structure in stage-1 graphite intercalation compounds. , 1985 .

[10]  A. Yamada,et al.  New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. , 2010, Journal of the American Chemical Society.

[11]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[12]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[13]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[14]  J. Songster,et al.  The na-si (sodium-silicon) system , 1992 .

[15]  F. Chou,et al.  Sodium-ion diffusion and ordering in single-crystal P 2 -Na x CoO 2 , 2008 .

[16]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[17]  Linda F. Nazar,et al.  Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni)† , 2010 .

[18]  Jianjun Li,et al.  Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. , 2012, Angewandte Chemie.

[19]  A. Yamada,et al.  Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries: a supersuperexchange-driven non-collinear antiferromagnet. , 2013, Inorganic chemistry.

[20]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[21]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[22]  Jeremy Barker,et al.  The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3 , 2006 .

[23]  Tsutomu Ohzuku,et al.  Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries , 2001 .

[24]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[25]  Linda F. Nazar,et al.  Tavorite Lithium Iron Fluorophosphate Cathode Materials: Phase Transition and Electrochemistry of LiFePO4F-Li2FePO4F , 2010 .

[26]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[27]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[28]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[29]  Jean-Marie Tarascon,et al.  Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials , 2009 .

[30]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[31]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[32]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[33]  Jeremy Barker,et al.  A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 F , 2003 .

[34]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[35]  D. Billaud,et al.  Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte , 1999 .

[36]  Ricardo Alcántara,et al.  Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries , 2005 .

[37]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[38]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[39]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[40]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[41]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[42]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[43]  Denis Billaud,et al.  Electrochemical insertion of sodium into hard carbons , 2002 .

[44]  J. Dahn,et al.  In Situ X‐Ray Study of the Electrochemical Reaction of Li with η ′ ‐ Cu6Sn5 , 2000 .

[45]  J. Dahn,et al.  Study of the Reactivity of Na/Hard Carbon in Different Solvents and Electrolytes , 2011 .

[46]  Tae-Hyun Nam,et al.  The discharge properties of Na/Ni3S2 cell at ambient temperature , 2008 .

[47]  A. Manthiram,et al.  Factors influencing the chemical lithium extraction rate from layered LiNi1−y−zCoyMnzO2 cathodes , 2004 .

[48]  R. Sáez-Puche,et al.  Studies on tetragonal Na2CoP2O7, a novel ionic conductor , 1999 .

[49]  K. W. Kim,et al.  Electrochemical properties of sodium/pyrite battery at room temperature , 2007 .

[50]  Linda F. Nazar,et al.  Na4‐αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na‐ion Batteries , 2013 .

[51]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[52]  D. Billaud,et al.  Sodium electrochemical insertion mechanisms in various carbon fibres , 2001 .

[53]  Steven M. George,et al.  Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition , 2010 .

[54]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[55]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[56]  F. Favier,et al.  Activated-phosphorus as new electrode material for Li-ion batteries , 2011 .

[57]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[58]  Cheol‐Min Park,et al.  A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries , 2009 .

[59]  Shinichi Komaba,et al.  A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries , 2013 .

[60]  M. Obrovac,et al.  Alloy Negative Electrodes for High Energy Density Metal-Ion Cells , 2011 .

[61]  Chao Luo,et al.  Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. , 2013, Nanoscale.

[62]  T. Ohzuku,et al.  Lithium insertion material of LiNi 1/2Mn 1/2O 2 for advanced lithium-ion batteries , 2003 .

[63]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[64]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[65]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[66]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[67]  J. Dahn,et al.  The Reaction of Lithium with Sn‐Mn‐C Intermetallics Prepared by Mechanical Alloying , 2000 .

[68]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[69]  Ricardo Alcántara,et al.  Carbon black: a promising electrode material for sodium-ion batteries , 2001 .

[70]  G. Ceder,et al.  Factors that affect Li mobility in layered lithium transition metal oxides , 2006 .

[71]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[72]  Junmei Zhao,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[73]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[74]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[75]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[76]  Philippe Poizot,et al.  Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices , 2011 .

[77]  Jiangfeng Qian,et al.  Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. , 2012, Chemical communications.

[78]  Jeremy Barker,et al.  Electrochemical Insertion Properties of the Novel Lithium Vanadium Fluorophosphate, LiVPO4 F , 2003 .

[79]  J. Moring,et al.  The crystal structure of NaMnPO4 , 1986 .

[80]  L. Monconduit,et al.  Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism , 2012 .

[81]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[82]  J. Bridson,et al.  Synthesis and Crystal Structure of Maricite and Sodium Iron(III) Hydroxyphosphate , 1998 .

[83]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[84]  J. Tarascon,et al.  Electrochemical reactivity of Mg2Sn phases with metallic lithium , 2004 .

[85]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[86]  D. Stevens,et al.  An In Situ Small‐Angle X‐Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell , 2000 .

[87]  Xiao‐Qing Yang,et al.  INVESTIGATION OF THE LOCAL STRUCTURE OF THE LINI0.5MN0.5O2 CATHODE MATERIAL DURING ELECTROCHEMICAL CYCLING BY X-RAY ABSORPTION AND NMR SPECTROSCOPY , 2002 .

[88]  Jun Chen,et al.  Fused Heteroaromatic Organic Compounds for High‐Power Electrodes of Rechargeable Lithium Batteries , 2013 .

[89]  Shin-ichi Nishimura,et al.  High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. , 2012, Angewandte Chemie.

[90]  M. Armand,et al.  Ionothermal Synthesis of Li-Based Fluorophosphates Electrodes † , 2010 .

[91]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[92]  P. Hagenmuller,et al.  A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .

[93]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[94]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[95]  J. Dahn,et al.  Comparison of the Reactivity of NaxC6 and LixC6 with Non-Aqueous Solvents and Electrolytes , 2011 .

[96]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[97]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[98]  J-M Tarascon,et al.  Key challenges in future Li-battery research , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[99]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[100]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[101]  J. Dahn,et al.  In Situ and Ex Situ XRD Investigation of Li [ Cr x Li1 / 3 − x / 3Mn2 / 3 − 2x / 3 ] O 2 ( x = 1 / 3 ) Cathode Material , 2003 .

[102]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[103]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[104]  P. Hagenmuller,et al.  Comportement electrochimique des phases NaxCoO2 , 1980 .

[105]  Y. Takeda,et al.  Preparation of LiFeO2 with Alpha‐ NaFeO2‐Type Structure Using a Mixed‐Alkaline Hydrothermal Method , 1997 .

[106]  M. Armand,et al.  Building better batteries , 2008, Nature.

[107]  Pedro Lavela,et al.  NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries , 2002 .

[108]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.