Chemistry Matters: High Leaf Litter Consumption Does Not Represent a Direct Increase in Shredders’ Biomass

[1]  M. Moretti,et al.  The cooler the better: Increased aquatic hyphomycete diversity in subtropical streams along a neotropical latitudinal gradient , 2023, Fungal Ecology.

[2]  M. Callisto,et al.  Effects of predation risk on invertebrate leaf-litter shredders in headwater streams in three Brazilian biomes , 2023, Aquatic Sciences.

[3]  V. C. Firmino,et al.  Effects of inter- and intraspecific competition and food availability on shredder invertebrates from an Amazonian stream , 2022, Aquatic Sciences.

[4]  R. Rezende,et al.  Land cover affects the breakdown of Pinus elliottii needles litter by microorganisms in soil and stream systems of subtropical riparian zones , 2021 .

[5]  Verónica Ferreira,et al.  Nutrient enrichment does not affect diet selection by a tropical shredder species in a mesocosm experiment , 2021, Limnologica.

[6]  N. Hamada,et al.  Immature life cycle of laboratory-reared Phylloicus elektoros and Phylloicus amazonas (Trichoptera: Calamoceratidae) from a central Amazonian stream , 2021 .

[7]  J. F. G. Júnior,et al.  Effects of microbial conditioning and temperature on the leaf-litter shredding activity of Phylloicus sp. , 2020 .

[8]  N. Hamada,et al.  Effects of Phylloicus case removal on consumption of leaf litter from two Neotropical biomes (Amazon rainforest and Cerrado savanna) , 2020, Limnology.

[9]  R. Umetsu,et al.  Post-fire consequences for leaf breakdown in a tropical stream , 2019, Acta Limnologica Brasiliensia.

[10]  K. Sridhar,et al.  Biodiversity of leaf litter fungi in streams along a latitudinal gradient. , 2019, The Science of the total environment.

[11]  S. Santos,et al.  Selection of food items by the omnivorous freshwater crustacean Aegla longirostri (Decapoda, Aeglidae) , 2018, Fundamental and Applied Limnology.

[12]  A. Tonin,et al.  Effects of litter size and quality on processing by decomposers in a tropical savannah stream , 2018 .

[13]  A. Ramírez,et al.  Life history and phenology of Phylloicus pulchrus (Trichoptera: Calamoceratidae) in a tropical rainforest stream of Puerto Rico , 2018 .

[14]  W. Dodds,et al.  Variation of stream metabolism along a tropical environmental gradient , 2018 .

[15]  R. M. Restello,et al.  Leaching of carbon from native and non-native leaf litter of subtropical riparian forests , 2018 .

[16]  M. Piedade,et al.  Effects of increasing temperature and, CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems , 2017, PloS one.

[17]  M. Feio,et al.  Temporal and Spatial Patterns in Inputs and Stock of Organic Matter in Savannah Streams of Central Brazil , 2017, Ecosystems.

[18]  M. Graça,et al.  Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing , 2017, Oecologia.

[19]  R. Holzenthal,et al.  Catalog of the Neotropical Trichoptera (Caddisflies) , 2017, ZooKeys.

[20]  A. O. Medeiros,et al.  The replacement of native plants by exotic species may affect the colonization and reproduction of aquatic hyphomycetes , 2016 .

[21]  Cang Hui,et al.  Biotic and abiotic variables influencing plant litter breakdown in streams: a global study , 2016, Proceedings of the Royal Society B: Biological Sciences.

[22]  E. Benedito,et al.  DYNAMICS OF LEAF FALL FROM RIPARIAN VEGETATION AND THE ACCUMULATION IN BENTHIC STOCK IN NEOTROPICAL STREAMS1 , 2016 .

[23]  A. Larrañaga,et al.  In-stream litter decomposition along an altitudinal gradient: does substrate quality matter? , 2016, Hydrobiologia.

[24]  J. F. G. Júnior,et al.  Effects of density and predation risk on leaf litter processing by Phylloicus sp. , 2015 .

[25]  A. Tiwari Oil Price and Exchange Rate in Malaysia: A Time-Frequency Analysis , 2015 .

[26]  K. Wantzen,et al.  A conceptual model of litter breakdown in low order streams , 2015 .

[27]  A. S. Melo,et al.  Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream , 2014 .

[28]  N. Griffiths,et al.  A review of allochthonous organic matter dynamics and metabolism in streams , 2010, Journal of the North American Benthological Society.

[29]  M. Callisto,et al.  Length–dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: Calamoceratidae) , 2009 .

[30]  M. Callisto,et al.  Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae) , 2009, Hydrobiologia.

[31]  M. Ardón,et al.  Do secondary compounds inhibit microbial- and insect-mediated leaf breakdown in a tropical rainforest stream, Costa Rica? , 2008, Oecologia.

[32]  R. Pearson,et al.  Leaf litter diversity and shredder preferences in an Australian tropical rain-forest stream , 2007, Journal of Tropical Ecology.

[33]  R. Pearson,et al.  Intraspecific interference in a tropical stream shredder guild , 2006 .

[34]  J. Rincón,et al.  Food quality and feeding preferences of Phylloicus sp. (Trichoptera:Calamoceratidae) , 2006, Journal of the North American Benthological Society.

[35]  A. L. Prather Revision of the Neotropical caddisfly genus Phylloicus (Trichoptera: Calamoceratidae) , 2003 .

[36]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[37]  M. Abelho,et al.  From Litterfall to Breakdown in Streams: A Review , 2001, TheScientificWorldJournal.

[38]  M. Graça,et al.  II. Leaf Litter Processing and Invertebrates The Role of Invertebrates on Leaf Litter Decomposition in Streams - a Review , 2001 .

[39]  E. Meyer,et al.  The relationship between body length parameters and dry mass in running water invertebrates , 1989, Archiv für Hydrobiologie.

[40]  R. Paine,et al.  Calorific values of benthic marine algae and their postulated relation to invertebrate food preference , 1969 .

[41]  J. M. González,et al.  Shredder Feeding and Growth Rates , 2020 .

[42]  F. Bärlocher,et al.  Total Phenolics , 2020, Methods to Study Litter Decomposition.

[43]  M. Moretti,et al.  Feeding preference of the shredder Phylloicus sp. for plant leaves of Chrysophyllum oliviforme or Miconia chartacea after conditioning in streams from different biomes. , 2019, Brazilian journal of biology = Revista brasleira de biologia.

[44]  L. U. Hepp,et al.  Shredders prefer soft and fungal-conditioned leaves, regardless of their initial chemical traits , 2019, Iheringia. Série Zoologia.

[45]  J. F. G. Júnior,et al.  Effect of leaf decomposition stage and water temperature on fragmentation activity of a shredder invertebrate species in lotic ecosystems , 2017 .

[46]  A. M. Santos,et al.  Temporal leaf litter breakdown in a tropical riparian forest with an open canopy , 2017 .

[47]  J. F. G. Júnior,et al.  Leaf litter input and electrical conductivity may change density of Phylloicus sp. (Trichoptera: Calamoceratidae) in a Brazilian savannah stream , 2016 .

[48]  Manuela Herman,et al.  Methods To Study Litter Decomposition A Practical Guide , 2016 .

[49]  R. Rezende,et al.  Leaf breakdown and invertebrate colonization of Eucalyptus grandis (Myrtaceae) and Hirtella glandulosa (Chrysobalanaceae) in two Neotropical lakes , 2010 .

[50]  Rajen Dinesh Shah HIV Transmission Statistical Modelling , 2010 .

[51]  M. Gessner,et al.  Methods to Study Litter Decomposition , 2005 .

[52]  K. Stewart,et al.  Life History and Case-Building Behavior of Phylloicus ornatus (Trichoptera: Calamoceratidae) in Two Spring-Fed Streams in Texas , 2002 .

[53]  J. Webster,et al.  The role of macroinvertebrates in stream ecosystem function. , 1996, Annual review of entomology.