Structure and dynamics of water on muscovite mica surfaces

[1]  D. Bish,et al.  Cation exchange at the mineral-water interface: H3O+/K+ competition at the surface of nano-muscovite. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[2]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[3]  H. Bakker Structural dynamics of aqueous salt solutions. , 2008, Chemical reviews.

[4]  D. Kovačević,et al.  Equilibria in the Electrical Interfacial Layer Revisited , 2007 .

[5]  P. Cummings,et al.  Shear dynamics of hydration layers. , 2006, The Journal of chemical physics.

[6]  P. Fenter,et al.  Cation sorption on the muscovite (0 0 1) surface in chloride solutions using high-resolution X-ray reflectivity , 2006 .

[7]  P. Fenter,et al.  Hydration and distribution of ions at the mica-water interface. , 2006, Physical review letters.

[8]  E. Kumacheva,et al.  Forces between mica surfaces, prepared in different ways, across aqueous and nonaqueous liquids confined to molecularly thin films. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[9]  K. Kawamura,et al.  Adsorption Sites of Cs on Smectite by EXAFS Analyses and Molecular Dynamics Simulations , 2006 .

[10]  Satoru Suzuki,et al.  Diffusion with micro-sorption in bentonite: evaluation by molecular dynamics and homogenization analysis , 2006 .

[11]  P. Cummings,et al.  Hydration structure of water confined between mica surfaces. , 2006, The Journal of chemical physics.

[12]  K. Kurihara,et al.  Viscosity and lubricity of aqueous NaCl solution confined between mica surfaces studied by shear resonance measurement. , 2006, Physical review letters.

[13]  Jianwei Wang,et al.  Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study , 2006 .

[14]  Hidemi Tanaka,et al.  Clayey injection veins and pseudotachylyte from two boreholes penetrating the Chelungpu Fault, Taiwan: Their implications for the contrastive seismic slip behaviors during the 1999 Chi‐Chi earthquake , 2005 .

[15]  K. Kawamura,et al.  Local Behavior of Water Molecules on Brucite, Talc, and Halite Surfaces: A Molecular Dynamics Study , 2004 .

[16]  U. Raviv,et al.  Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films : Water in confined geometries , 2004 .

[17]  Jianwei Wang,et al.  Structure, energetics, and dynamics of water adsorbed on the muscovite (001) surface: a molecular dynamics simulation. , 2004, The journal of physical chemistry. B.

[18]  Jianwei Wang,et al.  Molecular modeling of water structure in nano-pores between brucite (001) surfaces 1 1 Associate editor: U. Becker , 2004 .

[19]  Satoru Suzuki,et al.  Study of Vibrational Spectra of Interlayer Water in Sodium Beidellite by Molecular Dynamics Simulations , 2004 .

[20]  K. Kawamura,et al.  Secondary and tertial consolidation of bentonite clay: consolidation test, molecular dynamics simulation and multiscale homogenization analysis , 2004 .

[21]  K. Kawamura,et al.  Molecular-dynamics studies of surface of ice Ih. , 2004, The Journal of chemical physics.

[22]  K. Kawamura,et al.  Large self-diffusion of water on brucite surface by ab initio potential energy surface and molecular dynamics simulations , 2003 .

[23]  U. Raviv,et al.  Fluidity of Bound Hydration Layers , 2002, Science.

[24]  K. Kawamura,et al.  Physical Properties of Clay Minerals and Water : By means Molecular Dynamics Simulations , 2002 .

[25]  G. Sposito,et al.  Structure of water adsorbed on a mica surface. , 2002, Physical review letters.

[26]  G. A. Parks,et al.  Sorption of Trace Elements on Mineral Surfaces: Modern Perspectives from Spectroscopic Studies, and Comments on Sorption in the Marine Environment , 2001 .

[27]  P. Fenter,et al.  Molecular-scale density oscillations in water adjacent to a mica surface. , 2001, Physical review letters.

[28]  G. Brown How Minerals React with Water , 2001, Science.

[29]  Uri Raviv,et al.  Fluidity of water confined to subnanometre films , 2001, Nature.

[30]  A. Lin,et al.  Crack‐filling clays and weathered cracks in the DPRI 1800 m core near the Nojima Fault, Japan: Evidence for deep surface‐water circulation near an active fault , 2001 .

[31]  S. Granick,et al.  Viscosity of interfacial water. , 2001, Physical review letters.

[32]  P. Fenter,et al.  Structure of Barite (001)− and (210)−Water Interfaces , 2001 .

[33]  K. Kawamura,et al.  Molecular Simulation for Flexibility of a Single Clay Layer , 2001 .

[34]  Per Linse,et al.  Molecular dynamics simulations of polarizable water at different boundary conditions , 2000 .

[35]  D. Lockner,et al.  The effect of mineral bond strength and adsorbed water on fault gouge frictional strength , 2000 .

[36]  M. Berkowitz,et al.  Ewald summation for systems with slab geometry , 1999 .

[37]  M. Boonekamp,et al.  A Quantitative Model for Ion Diffusion in Compacted Bentonite , 1998 .

[38]  Yaochun Shen,et al.  Icelike Water Monolayer Adsorbed on Mica at Room Temperature , 1998 .

[39]  J. Rasaiah,et al.  Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 °C , 1998 .

[40]  M. Parrinello,et al.  Two Dimensional Ice Adsorbed on Mica Surface , 1997 .

[41]  R. Wintsch,et al.  Fluid‐rock reaction weakening of fault zones , 1995 .

[42]  J. Blencoe,et al.  The paragonite-muscovite solvus: I. P-T-X limits derived from the Na-K compositions of natural, quasibinary paragonite-muscovite pairs , 1994 .

[43]  Shen,et al.  Vibrational spectra of water molecules at quartz/water interfaces. , 1994, Physical review letters.

[44]  James P. Evans,et al.  Internal structure and weakening mechanisms of the San Andreas Fault , 1993 .

[45]  J. V. D. Veen,et al.  X-ray diffraction from rough, relaxed and reconstructed surfaces , 1989 .

[46]  J. Logan,et al.  Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition and fabric , 1987 .

[47]  Robinson,et al.  Crystal truncation rods and surface roughness. , 1986, Physical review. B, Condensed matter.

[48]  Jacob N. Israelachvili,et al.  Measurement of the viscosity of liquids in very thin films , 1986 .

[49]  J. Roux,et al.  K-Na exchange equilibria between muscovite-paragonite solid solution and hydrothermal chloride solutions , 1985, Mineralogical Magazine.

[50]  Richard M. Pashley,et al.  DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties , 1981 .

[51]  Toshihiko Shimamoto,et al.  Effects of simulated clay gouges on the sliding behavior of Tennessee sandston , 1981 .

[52]  L. Blatter,et al.  Clay gouges in the San Andreas Fault System and their possible implications , 1975 .

[53]  J. Klein,et al.  Dynamic properties of confined hydration layers. , 2009, Faraday discussions.

[54]  P. Fenter,et al.  Mineral–water interfacial structures revealed by synchrotron X-ray scattering , 2004 .

[55]  P. Fenter X-ray Reflectivity as a Probe of Mineral-Fluid Interfaces: A User Guide , 2002 .

[56]  K. Kawamura,et al.  Molecular dynamics modeling of tubular aluminum silicate: Imogolite , 2002 .

[57]  J. Byerlee,et al.  Chapter 3 Frictional Strength and the Effective Pressure Law of Montmorillonite and lllite Clays , 1992 .

[58]  J. A. Davis,et al.  Surface complexation modeling in aqueous geochemistry , 1990 .

[59]  Michael F. Hochella,et al.  Mineral-water interface geochemistry; an overview , 1990 .

[60]  S. Hall,et al.  Comparative microstructures of natural and experimentally produced clay-bearing fault gouges , 1986 .

[61]  J. Israelachvili Intermolecular and surface forces , 1985 .

[62]  J. Israelachvili,et al.  Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm , 1978 .

[63]  J. Iiyama Étude des réactions d'échange d'ions Na — K dans la série muscovite˗paragonite , 1964 .