Applications of Fractal Theory to Ecology

Forms with fractal geometric properties are found in ecosystems. Fractal geometry seems to be a basic space occupation property of biological systems. The surface area of the contact zones between interacting parts of an ecosystem is considerably increased if it has a fractal geometry, resulting in enhanced fluxes of energy, matter, and information. The interface structure often develops into a particular type of ecosystem, becoming an “interpenetration volume” that manages the fluxes and exchanges. The physical environment of ecosystems may also have a fractal morphology. This is found for instance in the granulometry of soils and sediments, and in the phenomenon of turbulence. On the other hand, organisms often display patchiness in space, which may be a fractal if patches are hierarchically nested.

[1]  R. Ryder,et al.  A Method for Estimating the Potential Fish Production of North-temperate Lakes , 1965 .

[2]  P. Safran Etude d'une nurserie littorale à partir des pêches accessoires d'une pêcherie artisanale de crevettes grises (Crangon crangon L.) , 1987 .

[3]  P. A. Burrough,et al.  Multiscale sources of spatial variation in soil. I: The application of fractal concepts to nested levels of soil variation , 1983 .

[4]  D. M. Mark Fractal dimension of a coral reef at ecological scales: a discussion , 1984 .

[5]  J. D. Meyer,et al.  SUR LA DYNAMIQUE DES SYSTÈMES ÉCOLOGIQUES NON LINÉAIRES , 1978 .

[6]  Robert M. May,et al.  NONLINEAR PHENOMENA IN ECOLOGY AND EPIDEMIOLOGY * , 1980 .

[7]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[8]  Roy L. Russo,et al.  On a Pin Versus Block Relationship For Partitions of Logic Graphs , 1971, IEEE Transactions on Computers.

[9]  K. Denman,et al.  The structure of pelagic marine ecosystems. , 1978 .

[10]  H. Wiegand Pielou, E. C. An introduction to mathematical ecology. Wiley Interscience. John Wiley & Sons, New York 1969. VIII + 286 S., 32 Abb., Preis 140 s , 1971 .

[11]  P. Burrough Fractal dimensions of landscapes and other environmental data , 1981, Nature.

[12]  David G. Green,et al.  Fractals in ecology: methods and interpretation , 1984 .

[13]  L. Legendre,et al.  Towards Dynamic Biological Oceanography and Limnology , 1984 .

[14]  S. Frontier,et al.  Diversity and structure in aquatic ecosystems , 1985 .

[15]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[16]  Robert M. May,et al.  Deterministic models with chaotic dynamics , 1975, Nature.

[17]  Daniel Goodman,et al.  The Theory of Diversity-Stability Relationships in Ecology , 1975, The Quarterly Review of Biology.

[18]  Clement F. Kent,et al.  An Index of Littoral Zone Complexity and Its Measurement , 1982 .

[19]  H. Morowitz,et al.  Energy Flow in Biology , 1969 .

[20]  G. E. Hutchinson,et al.  A treatise on limnology. , 1957 .

[21]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[22]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  H. D. Ursell,et al.  Sets of Fractional Dimensions (V) : On Dimensional Numbers of Some continuous Curves , 1937 .

[24]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[25]  G. F. Adams,et al.  Yield Properties and Structure of Boreal Percid Communities in Ontario , 1977 .

[26]  J. Villermaux,et al.  Transfert et réaction à une interface fractale représentée pr le «Peigne du Diable» , 1987 .

[27]  S. Frontier Utilisation des diagrammes rang-fréquence dans l'analyse des écosystèmes , 1976 .

[28]  G. Nicolis,et al.  Is there a climatic attractor? , 1984, Nature.

[29]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[30]  Roger Bradbury,et al.  Fractal dimension of a coral reef at ecological scales , 1983 .

[31]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .