The chromatic index of strongly regular graphs
暂无分享,去创建一个
[1] Vladimir D. Tonchev,et al. Spreads in Strongly Regular Graphs , 1996, Des. Codes Cryptogr..
[2] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .
[3] A. Hilton,et al. Regular Graphs of High Degree are 1‐Factorizable , 1985 .
[4] Anthony J. W. Hilton,et al. An application of Tutte's Theorem to 1-factorization of regular graphs of high degree , 2009, Discret. Math..
[5] David A. Pike,et al. The chromatic index of block intersection graphs of Kirkman triple systems and cyclic Steiner triple systems , 2017, Australas. J Comb..
[6] Lutz Volkmann. The Petersen graph is not 1-factorable: postscript to The Petersen graph is not 3-edge-colorable - a new proof' [Discrete Math. 268 (2003) 325-326] , 2004, Discret. Math..
[7] Willem H. Haemers,et al. Matchings in regular graphs from eigenvalues , 2009, J. Comb. Theory, Ser. B.
[8] A. Neumaier. Strongly regular graphs with smallest eigenvalue —m , 1979 .
[9] Andries E. Brouwer,et al. The Gewirtz Graph: An Exercise in the Theory of Graph Spectra , 1993, Eur. J. Comb..
[10] Asaf Ferber,et al. 1-Factorizations of Pseudorandom Graphs , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
[11] Andries E. Brouwer,et al. Eigenvalues and perfect matchings , 2005 .
[12] Weiqiang Li,et al. The Extendability of Matchings in Strongly Regular Graphs , 2014, Electron. J. Comb..
[13] Ian Holyer,et al. The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..
[14] D. Kuhn,et al. Proof of the 1-factorization and Hamilton Decomposition Conjectures , 2014, 1401.4183.
[15] W. Haemers. Eigenvalue techniques in design and graph theory , 1979 .
[16] Riste Skrekovski,et al. The Petersen graph is not 3-edge-colorable--a new proof , 2003, Discret. Math..
[17] Dean G. Hoffman,et al. The chromatic index of complete multipartite graphs , 1992, J. Graph Theory.
[18] Brian Alspach. A 1-factorization of the line graphs of complete graphs , 1982, J. Graph Theory.