Single molecule studies of DNA mismatch repair.

DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.

[1]  P K Hansma,et al.  Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. , 1999, Biophysical journal.

[2]  P. Modrich,et al.  A defined human system that supports bidirectional mismatch-provoked excision. , 2004, Molecular cell.

[3]  P. Tran,et al.  Functional Studies on the Candidate ATPase Domains of Saccharomyces cerevisiae MutLα , 2000, Molecular and Cellular Biology.

[4]  P. Modrich,et al.  Endonucleolytic Function of MutLα in Human Mismatch Repair , 2006, Cell.

[5]  P. Modrich,et al.  DNA mismatch repair: functions and mechanisms. , 2006, Chemical reviews.

[6]  A. V. van Oijen,et al.  Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion , 2008, Proceedings of the National Academy of Sciences.

[7]  Marc L. Mendillo,et al.  Analysis of the Interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 Complexes with DNA Using a Reversible DNA End-blocking System* , 2005, Journal of Biological Chemistry.

[8]  T. Kunkel,et al.  DNA mismatch repair. , 2005, Annual review of biochemistry.

[9]  Eric C Greene,et al.  Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair , 2012, Proceedings of the National Academy of Sciences.

[10]  Michelle D. Wang,et al.  Detection of high-affinity and sliding clamp modes for MSH2-MSH6 by single-molecule unzipping force analysis. , 2005, Molecular cell.

[11]  D. Erie,et al.  A novel single-molecule study to determine protein--protein association constants. , 2001, Journal of the American Chemical Society.

[12]  A. Pingoud,et al.  The rotation-coupled sliding of EcoRV , 2012, Nucleic acids research.

[13]  T. Kunkel,et al.  High affinity cooperative DNA binding by the yeast Mlh1-Pms1 heterodimer. , 2001, Journal of molecular biology.

[14]  K. Schulten,et al.  Structure-based model of the stepping motor of PcrA helicase. , 2006, Biophysical journal.

[15]  D. Reichman,et al.  Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. , 2007, Molecular cell.

[16]  M. Machius,et al.  Monovalent cation dependence and preference of GHKL ATPases and kinases 1 , 2003, FEBS letters.

[17]  R. Immormino,et al.  Structure of Unliganded GRP94, the Endoplasmic Reticulum Hsp90 , 2005, Journal of Biological Chemistry.

[18]  A. Riggs,et al.  The lac repressor-operator interaction. 3. Kinetic studies. , 1970, Journal of molecular biology.

[19]  Rob Willemsen,et al.  Microsatellite repeat instability and neurological disease , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[20]  R. Ghirlando,et al.  Structure of the MutL C‐terminal domain: a model of intact MutL and its roles in mismatch repair , 2004, The EMBO journal.

[21]  T. Kunkel,et al.  DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair. , 2003, Nucleic acids research.

[22]  L. Pearl,et al.  Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex , 2006, Nature.

[23]  Jacob Piehler,et al.  Four-color single-molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes. , 2010, BioTechniques.

[24]  Hong Wang,et al.  Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy. , 2003, Methods.

[25]  I. Bonnet,et al.  The diffusion constant of a labeled protein sliding along DNA , 2011, The European physical journal. E, Soft matter.

[26]  A. Fedier,et al.  Mutations in DNA mismatch repair genes: implications for DNA damage signaling and drug sensitivity (review). , 2004, International journal of oncology.

[27]  T. Kunkel,et al.  Differential correction of lagging-strand replication errors made by DNA polymerases α and δ , 2010, Proceedings of the National Academy of Sciences.

[28]  K. Fukui,et al.  Molecular Mechanisms of the Whole DNA Repair System: A Comparison of Bacterial and Eukaryotic Systems , 2010, Journal of nucleic acids.

[29]  E. Alani,et al.  The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs , 1996, Molecular and cellular biology.

[30]  Paul Modrich,et al.  DNA Polymerase (cid:100) Is Required for Human Mismatch Repair in Vitro * , 2022 .

[31]  D. Erie,et al.  Dynamics of MutS–Mismatched DNA Complexes Are Predictive of Their Repair Phenotypes , 2014, Biochemistry.

[32]  M. Inouye,et al.  GHKL, an emergent ATPase/kinase superfamily. , 2000, Trends in biochemical sciences.

[33]  J. Griffith,et al.  Bidirectional excision in methyl-directed mismatch repair. , 1993, The Journal of biological chemistry.

[34]  L. Gu,et al.  Bi-directional Processing of DNA Loops by Mismatch Repair-dependent and -independent Pathways in Human Cells* , 2003, The Journal of Biological Chemistry.

[35]  P. Friedhoff,et al.  Structure of the endonuclease domain of MutL: unlicensed to cut. , 2010, Molecular cell.

[36]  M. Schofield,et al.  Interaction of Escherichia coli MutS and MutL at a DNA Mismatch* , 2001, The Journal of Biological Chemistry.

[37]  P. Modrich,et al.  Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. , 1995, Science.

[38]  P. Modrich,et al.  Mismatch repair in replication fidelity, genetic recombination, and cancer biology. , 1996, Annual review of biochemistry.

[39]  A. Desai,et al.  Visualization of Eukaryotic DNA Mismatch Repair Reveals Distinct Recognition and Repair Intermediates , 2011, Cell.

[40]  T. Kunkel,et al.  Functional analysis of human MutSalpha and MutSbeta complexes in yeast. , 1999, Nucleic acids research.

[41]  Antoine M. van Oijen,et al.  A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Erie,et al.  Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes. , 2010, Biochemistry.

[43]  F. Collins,et al.  Meiotic arrest and aneuploidy in MLH3-deficient mice , 2002, Nature Genetics.

[44]  T. Kunkel,et al.  Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair , 1996, Nature Genetics.

[45]  E. Larson,et al.  DNA Template Requirements for Human Mismatch Repair in Vitro * , 2002, The Journal of Biological Chemistry.

[46]  Janusz M Bujnicki,et al.  Analysis of the quaternary structure of the MutL C-terminal domain. , 2005, Journal of molecular biology.

[47]  J. Jiricny,et al.  MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2 , 1996, Current Biology.

[48]  J. Jiricny,et al.  GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. , 1995, Science.

[49]  C. Ban,et al.  MutS Switches Between Two Fundamentally Distinct Clamps during Mismatch Repair , 2010, Nature Structural &Molecular Biology.

[50]  M. Lamers,et al.  Structures of Escherichia coli DNA mismatch repair enzyme MutS in complex with different mismatches: a common recognition mode for diverse substrates. , 2003, Nucleic acids research.

[51]  J. Jiricny,et al.  Mutations within the hMLH1 and hPMS2 Subunits of the Human MutLα Mismatch Repair Factor Affect Its ATPase Activity, but Not Its Ability to Interact with hMutSα* , 2002, The Journal of Biological Chemistry.

[52]  N. Tanner,et al.  Visualizing DNA replication at the single-molecule level. , 2010, Methods in enzymology.

[53]  Yanbin Zhang,et al.  Differential Requirement for Proliferating Cell Nuclear Antigen in 5′ and 3′ Nick-directed Excision in Human Mismatch Repair* , 2004, Journal of Biological Chemistry.

[54]  C. Ban,et al.  Transformation of MutL by ATP Binding and Hydrolysis A Switch in DNA Mismatch Repair , 1999, Cell.

[55]  T. Kunkel,et al.  Saccharomyces cerevisiae MutLα Is a Mismatch Repair Endonuclease* , 2007, Journal of Biological Chemistry.

[56]  R. Immormino,et al.  Ligand-induced Conformational Shift in the N-terminal Domain of GRP94, an Hsp90 Chaperone* , 2004, Journal of Biological Chemistry.

[57]  D. Sherratt,et al.  Single-molecule DNA repair in live bacteria , 2012, Proceedings of the National Academy of Sciences.

[58]  A. V. van Oijen,et al.  Single-molecule analysis of DNA replication in Xenopus egg extracts. , 2012, Methods.

[59]  T. Kunkel,et al.  Direct visualization of asymmetric adenine-nucleotide-induced conformational changes in MutL alpha. , 2008, Molecular cell.

[60]  Andres A. Larrea,et al.  Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase α. , 2013, DNA Repair.

[61]  R. Kolodner,et al.  The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. Karran,et al.  Human mismatch repair, drug-induced DNA damage, and secondary cancer. , 2003, Biochimie.

[63]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. , 1981, Biochemistry.

[64]  J. Berger,et al.  Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI. , 2005, Structure.

[65]  C. Ban,et al.  Crystal Structure and ATPase Activity of MutL Implications for DNA Repair and Mutagenesis , 1998, Cell.

[66]  Andreas D. Baxevanis,et al.  MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability , 2000, Nature Genetics.

[67]  Yong Jiang,et al.  Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair , 2011, The EMBO journal.

[68]  P. Hsieh,et al.  Determination of protein–DNA binding constants and specificities from statistical analyses of single molecules: MutS–DNA interactions , 2005, Nucleic acids research.

[69]  Pierre R. Bushel,et al.  Inactivation of DNA Mismatch Repair by Increased Expression of Yeast MLH1 , 2001, Molecular and Cellular Biology.

[70]  David A. Agard,et al.  Structural Analysis of E. coli hsp90 Reveals Dramatic Nucleotide-Dependent Conformational Rearrangements , 2006, Cell.

[71]  C. Ban,et al.  ATP alters the diffusion mechanics of MutS on mismatched DNA. , 2012, Structure.

[72]  B. Harfe,et al.  Discrete in vivo roles for the MutL homologs Mlh2p and Mlh3p in the removal of frameshift intermediates in budding yeast , 2000, Current Biology.

[73]  A. Koide,et al.  A peptide tag system for facile purification and single-molecule immobilization. , 2009, Biochemistry.

[74]  B. Harfe,et al.  DNA mismatch repair and genetic instability. , 2000, Annual review of genetics.

[75]  Paul Modrich,et al.  DNA Chain Length Dependence of Formation and Dynamics of hMutSα·hMutLα·Heteroduplex Complexes* , 2001, The Journal of Biological Chemistry.

[76]  Richard Fishel,et al.  Single-Molecule Analysis Reveals the Kinetics and Physiological Relevance of MutL-ssDNA Binding , 2010, PloS one.

[77]  K. Weninger,et al.  Detecting the conformation of individual proteins in live cells , 2010, Nature Methods.

[78]  P. Hsieh,et al.  Mechanism of MutS Searching for DNA Mismatches and Signaling Repair* , 2008, Journal of Biological Chemistry.

[79]  R. Kolodner,et al.  Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[80]  W. Edelmann,et al.  A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair , 2009, Proceedings of the National Academy of Sciences.

[81]  Sabine Santucci-Darmanin,et al.  Les homologues de MutS et de MutL au cours de la méiose chez les mammifères , 2003 .

[82]  M. O’Donnell,et al.  Involvement of the β Clamp in Methyl-directed Mismatch Repair in Vitro* , 2009, The Journal of Biological Chemistry.

[83]  P. Modrich,et al.  Functions of MutLα, Replication Protein A (RPA), and HMGB1 in 5′-Directed Mismatch Repair* , 2009, The Journal of Biological Chemistry.

[84]  P. Modrich,et al.  Mechanism of 5'-directed excision in human mismatch repair. , 2003, Molecular cell.

[85]  Liya Gu,et al.  Partial Reconstitution of Human DNA Mismatch Repair In Vitro: Characterization of the Role of Human Replication Protein A , 2002, Molecular and Cellular Biology.

[86]  J. Griffith,et al.  MutS mediates heteroduplex loop formation by a translocation mechanism , 1997, The EMBO journal.

[87]  J. Hays,et al.  Mismatch Repair in Human Nuclear Extracts , 2002, The Journal of Biological Chemistry.

[88]  S. Lata,et al.  Stable and functional immobilization of histidine-tagged proteins via multivalent chelator headgroups on a molecular poly(ethylene glycol) brush. , 2005, Analytical chemistry.

[89]  Jacob Piehler,et al.  Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. , 2006, Journal of the American Chemical Society.

[90]  Wei Yang,et al.  Structure and function of the N‐terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase , 2001, The EMBO journal.

[91]  Guo-Min Li DNA mismatch repair and cancer. , 2003, Frontiers in bioscience : a journal and virtual library.

[92]  D. Sherratt,et al.  Stoichiometry and Architecture of Active DNA Replication Machinery in Escherichia coli , 2010, Science.

[93]  M. Visnapuu,et al.  Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice , 2010, Nature Structural &Molecular Biology.

[94]  P. Szankasi,et al.  A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction , 1995, Science.

[95]  Paul Modrich,et al.  Human Exonuclease I Is Required for 5′ and 3′ Mismatch Repair* , 2002, The Journal of Biological Chemistry.

[96]  C. Bustamante,et al.  Facilitated Target Location on DNA by IndividualEscherichia coli RNA Polymerase Molecules Observed with the Scanning Force Microscope Operating in Liquid* , 1999, The Journal of Biological Chemistry.

[97]  Anastassis Perrakis,et al.  The crystal structure of DNA mismatch repair protein MutS binding to a G·T mismatch , 2000, Nature.

[98]  A. Riggs,et al.  The lac represser-operator interaction , 1970 .

[99]  Greg L. Hura,et al.  Conformational trapping of Mismatch Recognition Complex MSH2/MSH3 on repair-resistant DNA loops , 2011, Proceedings of the National Academy of Sciences.

[100]  P. Modrich Strand-specific Mismatch Repair in Mammalian Cells* , 1997, The Journal of Biological Chemistry.

[101]  P. Cohen,et al.  Mismatch repair proteins, meiosis, and mice: understanding the complexities of mammalian meiosis. , 2004, Experimental cell research.

[102]  R. Fishel,et al.  The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. , 2001, Cancer research.

[103]  P. Karran,et al.  Mismatch repair and response to DNA-damaging antitumour therapies. , 2003, European journal of cancer.

[104]  R. Fishel,et al.  The Human Mismatch Recognition Complex hMSH2-hMSH6 Functions as a Novel Molecular Switch , 1997, Cell.

[105]  P. Tran,et al.  Interactions of Exo1p with components of MutLα in Saccharomyces cerevisiae , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[106]  J. Jiricny,et al.  hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSα , 1998, The EMBO journal.

[107]  M. Schofield,et al.  DNA bending and unbending by MutS govern mismatch recognition and specificity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[108]  N. Tanner,et al.  Direct Observation of Enzymes Replicating DNA Using a Single-molecule DNA Stretching Assay , 2010, Journal of visualized experiments : JoVE.

[109]  P. V. von Hippel,et al.  Facilitated Target Location in Biological Systems* , 2022 .

[110]  M. Schofield,et al.  DNA mismatch repair: molecular mechanisms and biological function. , 2003, Annual review of microbiology.

[111]  Wei Yang,et al.  Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA , 2000, Nature.

[112]  C. Bustamante,et al.  DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. , 1994, Science.

[113]  Caroline P. Jung,et al.  Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA , 2012, Nucleic acids research.

[114]  G. Marsischky,et al.  hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[115]  D. Erie,et al.  Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling , 2012, The EMBO journal.

[116]  Gene-Wei Li,et al.  Central dogma at the single-molecule level in living cells , 2011, Nature.

[117]  K. Murakami,et al.  Single-molecule imaging of RNA polymerase-DNA interactions in real time. , 1999, Biophysical journal.

[118]  R E Glass,et al.  Visualization of single molecules of RNA polymerase sliding along DNA. , 1993, Science.

[119]  T. Kunkel,et al.  Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. , 2003, Genes & development.

[120]  M. Capitanio,et al.  Optical Methods to Study Protein-DNA Interactions in Vitro and in Living Cells at the Single-Molecule Level , 2013, International journal of molecular sciences.

[121]  Antoine M. van Oijen,et al.  Real-time single-molecule observation of rolling-circle DNA replication , 2009, Nucleic acids research.

[122]  L. Beese,et al.  Structure of the Human MutSα DNA Lesion Recognition Complex , 2007 .

[123]  T. Kunkel,et al.  Evidence for Preferential Mismatch Repair of Lagging Strand DNA Replication Errors in Yeast , 2003, Current Biology.

[124]  T. Prolla,et al.  Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations , 1997, Molecular and cellular biology.

[125]  M. Radman,et al.  Stoichiometry of MutS and MutL at unrepaired mismatches in vivo suggests a mechanism of repair , 2012, Nucleic acids research.

[126]  P. Modrich,et al.  Human Mismatch Repair , 2005, Journal of Biological Chemistry.

[127]  A. Tomkinson,et al.  Reconstitution of 5′-Directed Human Mismatch Repair in a Purified System , 2005, Cell.

[128]  X. Xie,et al.  Nonspecifically bound proteins spin while diffusing along DNA , 2009, Nature Structural &Molecular Biology.