On uniqueness of p-adic period morphisms, II

We prove equality of the various rational $p$-adic period morphisms for smooth, not necessarily proper, schemes. We start with showing that the $K$-theoretical uniqueness criterion we had found earlier for proper smooth schemes extends to proper finite simplicial schemes in the good reduction case and to cohomology with compact support in the semistable reduction case. It yields the equality of the period morphisms for cohomology with compact support defined using the syntomic, almost étale, and motivic constructions. We continue with showing that the $h$-cohomology period morphism agrees with the syntomic and almost étale period morphisms whenever the latter morphisms are defined (and up to a change of Hyodo–Kato cohomology). We do it by lifting the syntomic and almost étale period morphisms to the $h$-site of varieties over a field, where their equality with the $h$-cohomology period morphism can be checked directly using the Beilinson Poincaré lemma and the case of dimension $0$. This also shows that the syntomic and almost étale period morphisms have a natural extension to the Voevodsky triangulated category of motives and enjoy many useful properties (since so does the $h$-cohomology period morphism).

[1]  Pierre Colmez,et al.  Integral p-adic étale cohomology of Drinfeld symmetric spaces , 2019, Duke Mathematical Journal.

[2]  P. Scholze,et al.  Topological Hochschild homology and integral p$p$-adic Hodge theory , 2018, Publications mathématiques de l'IHÉS.

[3]  Pierre Colmez,et al.  Cohomology of p-adic Stein spaces , 2018, Inventiones mathematicae.

[4]  Shizhang Li,et al.  LOGARITHMIC DE RHAM COMPARISON FOR OPEN RIGID SPACES , 2018, Forum of Mathematics, Sigma.

[5]  Kęstutis Česnavičius,et al.  The $A_{\text{inf}}$ -cohomology in the semistable case , 2017, Compositio Mathematica.

[6]  Fucheng Tan,et al.  Crystalline comparison isomorphisms in p-adic Hodge theory :the absolutely unramified case , 2015, Algebra & Number Theory.

[7]  Denis-Charles Cisinski,et al.  Triangulated Categories of Mixed Motives , 2009, Springer Monographs in Mathematics.

[8]  Ruochuan Liu,et al.  Logarithmic Riemann-Hilbert correspondences for rigid varieties. , 2018, 1803.05786.

[9]  P. Scholze,et al.  Integral p$p$-adic Hodge theory , 2016, Publications mathématiques de l'IHÉS.

[10]  Wiesława Nizioł On syntomic regulators I: constructions , 2016, 1607.04975.

[11]  P. Scholze,et al.  Integral p-adic Hodge theory , 2016 .

[12]  Michel Gros,et al.  Chapter VI. Covanishing topos and generalizations , 2016 .

[13]  Wiesława Nizioł,et al.  Syntomic cohomology and p-adic regulators for varieties over p-adic fields , 2013, 1309.7620.

[14]  F. D'eglise,et al.  On $p$-adic absolute Hodge cohomology and syntomic coefficients, I , 2015, 1508.02567.

[15]  Pierre Colmez,et al.  Syntomic complexes and p-adic nearby cycles , 2015, 1505.06471.

[16]  Piotr Achinger $K({\it\pi},1)$-neighborhoods and comparison theorems , 2014, Compositio Mathematica.

[17]  lawa Nizio TORIC SINGULARITIES: LOG-BLOW-UPS AND GLOBAL RESOLUTIONS , 2015 .

[18]  Denis-Charles Cisinski,et al.  Integral mixed motives in equal characteristic , 2014, 1410.6359.

[19]  P. Scholze $p$ -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES , 2012, Forum of Mathematics, Pi.

[20]  B. Bhatt p-adic derived de Rham cohomology , 2012, 1204.6560.

[21]  A. Beilinson On the crystalline period map , 2011, 1111.3316.

[22]  Go Yamashita p-Adic Hodge theory for open varieties , 2011 .

[23]  A. Beilinson p-adic periods and derived de Rham cohomology , 2011, 1102.1294.

[24]  Vladimir Voevodsky,et al.  On motivic cohomology with Z/l -coefficients , 2008, 0805.4430.

[25]  Wiesława Nizioł Semistable conjecture via $K$-theory , 2008 .

[26]  Wiesława Nizioł,et al.  On Uniqueness of p-adic Period Morphisms , 2009 .

[27]  Kazuya Kato Toric Singularities , 2008 .

[28]  Thomas H. Geisser Arithmetic homology and an integral version of Kato's conjecture , 2007, 0704.1192.

[29]  Reza Akhtar A mod-ℓ vanishing theorem of Beilinson–Soulé type , 2007 .

[30]  W. Lawa SEMISTABLE CONJECTURE VIA K-THEORY , 2007 .

[31]  Wiesława Nizioł Toric singularities: Log-blow-ups and global resolutions , 2006 .

[32]  Wiesława Nizioł p-adic motivic cohomology in arithmetic , 2006 .

[33]  Takeshi Saito,et al.  Log smooth extension of a family of curves and semi-stable reduction , 2004 .

[34]  Vladimir Voevodsky,et al.  Motivic cohomology with Z/2-coefficients , 2003 .

[35]  Takeshi Tsuji On the maximal unramified quotients of -adic étale cohomology groups and logarithmic Hodge–Witt sheaves. , 2003 .

[36]  M. Kisin Potential semi-stability ofp-adic étale cohomology , 2002 .

[37]  P. Colmez ESPACES DE BANACH DE DIMENSION FINIE , 2002, Journal of the Institute of Mathematics of Jussieu.

[38]  Bruno Kahn,et al.  K-Theory of Semi-local Rings with Finite Coefficients and Étale Cohomology , 2002 .

[39]  G. Faltings Almost étale extensions , 2002 .

[40]  C. Breuil,et al.  Torsion étale and crystalline cohomologies , 2002 .

[41]  P. Berthelot Cohomologies p-adiques et applications arithmétiques , 2002 .

[42]  E. Friedlander,et al.  Some remarks concerning mod-nK-theory , 2001 .

[43]  Thomas H. Geisser,et al.  The K-theory of fields in characteristic p , 2000 .

[44]  Takeshi Tsuji On the $p$ adic nearby cycles of log smooth families , 2000 .

[45]  Vladimir Voevodsky,et al.  Cycles, Transfers And Motivic Homology Theories , 2000 .

[46]  E. Friedlander,et al.  SOME REMARKS CONCERNING MOD-n K-THEORY , 2000 .

[47]  Takeshi Tsuji p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case , 1999 .

[48]  Takeshi Tsuji Poincaré Duality for Logarithmic Crystalline Cohomology , 1999, Compositio Mathematica.

[49]  A. Suslin Higher Chow groups and etale cohomology , 1999 .

[50]  Wiesława Nizioł Crystalline conjecture via K-theory , 1998 .

[51]  Takeshi Tsuji -adic Hodge theory in the semi-stable reduction case. , 1998 .

[52]  Wiesława Nizioł Duality in the cohomology of crystalline local systems , 1997, Compositio Mathematica.

[53]  Wiesława Nizioł Cohomology of crystalline representations , 1993 .

[54]  Kazuya Kato,et al.  Syntomic cohomology and p-adic étale cohomology , 1992 .

[55]  M. Gros,et al.  Régulateurs syntomiques et valeurs de fonctionsL p-adiques I , 1990 .

[56]  井草 準一 Algebraic analysis, geometry, and number theory : proceedings of the JAMI Inaugural Conference , 1989 .

[57]  G. Faltings Crystalline cohomology and p-adic Galois-representations , 1988 .

[58]  G. Faltings p-adic Hodge theory , 1988 .

[59]  L. Illusie,et al.  Relèvements modulop2 et décomposition du complexe de de Rham , 1987 .

[60]  D. M. Kan,et al.  Homotopy Limits, Completions and Localizations , 1987 .

[61]  Kazuya Kato On $p$-Adic Vanishing Cycles (Application of ideas of Fontaine-Messing) , 1987 .

[62]  K. Ribet Current Trends in Arithmetical Algebraic Geometry , 1987 .

[63]  Spencer Bloch,et al.  Algebraic cycles and higher K-theory , 1986 .

[64]  R. Thomason Algebraic $K$-theory and etale cohomology , 1985 .

[65]  P. Berthelot,et al.  F-isocrystals and de Rham cohomology. I , 1983 .

[66]  C. Soulé,et al.  Filtrations On Higher Algebraic K-Theory , 1983 .

[67]  P. Fontaine Sur certains types de representations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate , 1982 .

[68]  C. Soulé Operations on etale K-theory. Applications , 1982 .

[69]  J. Fontaine,et al.  Construction de représentations $p$-adiques , 1982 .

[70]  H. Gillet Riemann-Roch theorems for higher algebraic K-theory , 1981 .

[71]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[72]  P. Deligne Theorie de Hodge I , 1970 .

[73]  M. Levine K-THEORY AND MOTIVIC COHOMOLOGY OF SCHEMES , 2022 .