On uniqueness of p-adic period morphisms, II
暂无分享,去创建一个
[1] Pierre Colmez,et al. Integral p-adic étale cohomology of Drinfeld symmetric spaces , 2019, Duke Mathematical Journal.
[2] P. Scholze,et al. Topological Hochschild homology and integral p$p$-adic Hodge theory , 2018, Publications mathématiques de l'IHÉS.
[3] Pierre Colmez,et al. Cohomology of p-adic Stein spaces , 2018, Inventiones mathematicae.
[4] Shizhang Li,et al. LOGARITHMIC DE RHAM COMPARISON FOR OPEN RIGID SPACES , 2018, Forum of Mathematics, Sigma.
[5] Kęstutis Česnavičius,et al. The $A_{\text{inf}}$ -cohomology in the semistable case , 2017, Compositio Mathematica.
[6] Fucheng Tan,et al. Crystalline comparison isomorphisms in p-adic Hodge theory :the absolutely unramified case , 2015, Algebra & Number Theory.
[7] Denis-Charles Cisinski,et al. Triangulated Categories of Mixed Motives , 2009, Springer Monographs in Mathematics.
[8] Ruochuan Liu,et al. Logarithmic Riemann-Hilbert correspondences for rigid varieties. , 2018, 1803.05786.
[9] P. Scholze,et al. Integral p$p$-adic Hodge theory , 2016, Publications mathématiques de l'IHÉS.
[10] Wiesława Nizioł. On syntomic regulators I: constructions , 2016, 1607.04975.
[11] P. Scholze,et al. Integral p-adic Hodge theory , 2016 .
[12] Michel Gros,et al. Chapter VI. Covanishing topos and generalizations , 2016 .
[13] Wiesława Nizioł,et al. Syntomic cohomology and p-adic regulators for varieties over p-adic fields , 2013, 1309.7620.
[14] F. D'eglise,et al. On $p$-adic absolute Hodge cohomology and syntomic coefficients, I , 2015, 1508.02567.
[15] Pierre Colmez,et al. Syntomic complexes and p-adic nearby cycles , 2015, 1505.06471.
[16] Piotr Achinger. $K({\it\pi},1)$-neighborhoods and comparison theorems , 2014, Compositio Mathematica.
[17] lawa Nizio. TORIC SINGULARITIES: LOG-BLOW-UPS AND GLOBAL RESOLUTIONS , 2015 .
[18] Denis-Charles Cisinski,et al. Integral mixed motives in equal characteristic , 2014, 1410.6359.
[19] P. Scholze. $p$ -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES , 2012, Forum of Mathematics, Pi.
[20] B. Bhatt. p-adic derived de Rham cohomology , 2012, 1204.6560.
[21] A. Beilinson. On the crystalline period map , 2011, 1111.3316.
[22] Go Yamashita. p-Adic Hodge theory for open varieties , 2011 .
[23] A. Beilinson. p-adic periods and derived de Rham cohomology , 2011, 1102.1294.
[24] Vladimir Voevodsky,et al. On motivic cohomology with Z/l -coefficients , 2008, 0805.4430.
[25] Wiesława Nizioł. Semistable conjecture via $K$-theory , 2008 .
[26] Wiesława Nizioł,et al. On Uniqueness of p-adic Period Morphisms , 2009 .
[27] Kazuya Kato. Toric Singularities , 2008 .
[28] Thomas H. Geisser. Arithmetic homology and an integral version of Kato's conjecture , 2007, 0704.1192.
[29] Reza Akhtar. A mod-ℓ vanishing theorem of Beilinson–Soulé type , 2007 .
[30] W. Lawa. SEMISTABLE CONJECTURE VIA K-THEORY , 2007 .
[31] Wiesława Nizioł. Toric singularities: Log-blow-ups and global resolutions , 2006 .
[32] Wiesława Nizioł. p-adic motivic cohomology in arithmetic , 2006 .
[33] Takeshi Saito,et al. Log smooth extension of a family of curves and semi-stable reduction , 2004 .
[34] Vladimir Voevodsky,et al. Motivic cohomology with Z/2-coefficients , 2003 .
[35] Takeshi Tsuji. On the maximal unramified quotients of -adic étale cohomology groups and logarithmic Hodge–Witt sheaves. , 2003 .
[36] M. Kisin. Potential semi-stability ofp-adic étale cohomology , 2002 .
[37] P. Colmez. ESPACES DE BANACH DE DIMENSION FINIE , 2002, Journal of the Institute of Mathematics of Jussieu.
[38] Bruno Kahn,et al. K-Theory of Semi-local Rings with Finite Coefficients and Étale Cohomology , 2002 .
[39] G. Faltings. Almost étale extensions , 2002 .
[40] C. Breuil,et al. Torsion étale and crystalline cohomologies , 2002 .
[41] P. Berthelot. Cohomologies p-adiques et applications arithmétiques , 2002 .
[42] E. Friedlander,et al. Some remarks concerning mod-nK-theory , 2001 .
[43] Thomas H. Geisser,et al. The K-theory of fields in characteristic p , 2000 .
[44] Takeshi Tsuji. On the $p$ adic nearby cycles of log smooth families , 2000 .
[45] Vladimir Voevodsky,et al. Cycles, Transfers And Motivic Homology Theories , 2000 .
[46] E. Friedlander,et al. SOME REMARKS CONCERNING MOD-n K-THEORY , 2000 .
[47] Takeshi Tsuji. p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case , 1999 .
[48] Takeshi Tsuji. Poincaré Duality for Logarithmic Crystalline Cohomology , 1999, Compositio Mathematica.
[49] A. Suslin. Higher Chow groups and etale cohomology , 1999 .
[50] Wiesława Nizioł. Crystalline conjecture via K-theory , 1998 .
[51] Takeshi Tsuji. -adic Hodge theory in the semi-stable reduction case. , 1998 .
[52] Wiesława Nizioł. Duality in the cohomology of crystalline local systems , 1997, Compositio Mathematica.
[53] Wiesława Nizioł. Cohomology of crystalline representations , 1993 .
[54] Kazuya Kato,et al. Syntomic cohomology and p-adic étale cohomology , 1992 .
[55] M. Gros,et al. Régulateurs syntomiques et valeurs de fonctionsL p-adiques I , 1990 .
[56] 井草 準一. Algebraic analysis, geometry, and number theory : proceedings of the JAMI Inaugural Conference , 1989 .
[57] G. Faltings. Crystalline cohomology and p-adic Galois-representations , 1988 .
[58] G. Faltings. p-adic Hodge theory , 1988 .
[59] L. Illusie,et al. Relèvements modulop2 et décomposition du complexe de de Rham , 1987 .
[60] D. M. Kan,et al. Homotopy Limits, Completions and Localizations , 1987 .
[61] Kazuya Kato. On $p$-Adic Vanishing Cycles (Application of ideas of Fontaine-Messing) , 1987 .
[62] K. Ribet. Current Trends in Arithmetical Algebraic Geometry , 1987 .
[63] Spencer Bloch,et al. Algebraic cycles and higher K-theory , 1986 .
[64] R. Thomason. Algebraic $K$-theory and etale cohomology , 1985 .
[65] P. Berthelot,et al. F-isocrystals and de Rham cohomology. I , 1983 .
[66] C. Soulé,et al. Filtrations On Higher Algebraic K-Theory , 1983 .
[67] P. Fontaine. Sur certains types de representations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate , 1982 .
[68] C. Soulé. Operations on etale K-theory. Applications , 1982 .
[69] J. Fontaine,et al. Construction de représentations $p$-adiques , 1982 .
[70] H. Gillet. Riemann-Roch theorems for higher algebraic K-theory , 1981 .
[71] A. Grothendieck,et al. Théorie des Topos et Cohomologie Etale des Schémas , 1972 .
[72] P. Deligne. Theorie de Hodge I , 1970 .
[73] M. Levine. K-THEORY AND MOTIVIC COHOMOLOGY OF SCHEMES , 2022 .