Editorial overview: Cellular neuroscience

Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signaling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related ‘barrel cortex’. Our data provide evidence that the temporal structure of physiological action potential patterns is crucial for an effective invasion of the main apical dendrites up to the major branch point. Both the critical frequency enabling action potential trains to invade efficiently and the dendritic calcium profile changed during postnatal development. In contrast to the main apical dendrite, the more passive properties of the short basal and apical tuft dendrites prevented an efficient back-propagation. Various Ca2+ channel types contributed to the enhanced calcium signals during high-frequency firing activity, whereas A-type K+ and BKCa channels strongly suppressed it. Our data support models in which the interaction of synaptic input with action potential output is a function of the timing, rate and pattern of action potentials, and dendritic location.

[1]  D. Prince,et al.  Patch-clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex. , 1991, Cerebral cortex.

[2]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[3]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.

[4]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[5]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[6]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[7]  Maria V. Sanchez-Vives,et al.  Influence of low and high frequency inputs on spike timing in visual cortical neurons. , 1997, Cerebral cortex.

[8]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[9]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[10]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[11]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[12]  C. Stevens,et al.  Input synchrony and the irregular firing of cortical neurons , 1998, Nature Neuroscience.

[13]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[14]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[15]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S W Hell,et al.  Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. , 1999, Biophysical journal.

[17]  J. Zhu,et al.  Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites , 2000, The Journal of physiology.

[18]  G. Stuart,et al.  Backpropagation of Physiological Spike Trains in Neocortical Pyramidal Neurons: Implications for Temporal Coding in Dendrites , 2000, The Journal of Neuroscience.

[19]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[20]  M. Diamond,et al.  The Role of Spike Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[21]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[22]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[23]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[24]  Michele Migliore,et al.  Normalization of Ca2+ Signals by Small Oblique Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[25]  Srdjan D Antic,et al.  Action Potentials in Basal and Oblique Dendrites of Rat Neocortical Pyramidal Neurons , 2003, The Journal of physiology.

[26]  Andreas T. Schaefer,et al.  Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. , 2003, Journal of neurophysiology.

[27]  Michele Migliore,et al.  Normalization of Ca 2 Signals by Small Oblique Dendrites of CA 1 Pyramidal Neurons , 2003 .

[28]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[29]  D. Johnston,et al.  Distance-dependent modifiable threshold for action potential back-propagation in hippocampal dendrites. , 2003, Journal of neurophysiology.

[30]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[31]  D. Feldman,et al.  Modulation of spike timing by sensory deprivation during induction of cortical map plasticity , 2004, Nature Neuroscience.

[32]  Daniel Johnston,et al.  LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites , 2004, Nature Neuroscience.

[33]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.

[34]  T. Berger,et al.  Homogeneous distribution of large‐conductance calcium‐dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons , 2005, The European journal of neuroscience.

[35]  D. Johnston,et al.  Plasticity of dendritic excitability. , 2005, Journal of neurobiology.

[36]  B. Kampa,et al.  Calcium Spikes in Basal Dendrites of Layer 5 Pyramidal Neurons during Action Potential Bursts , 2006, The Journal of Neuroscience.

[37]  R Kötter,et al.  Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. , 2006, Cerebral cortex.

[38]  Y. Dan,et al.  Spike timing-dependent plasticity: from synapse to perception. , 2006, Physiological reviews.

[39]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[40]  Bert Sakmann,et al.  Postnatal development of synaptic transmission in local networks of L5A pyramidal neurons in rat somatosensory cortex , 2007, The Journal of physiology.

[41]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[42]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[43]  B. Sakmann,et al.  Dendritic Spikes in Apical Dendrites of Neocortical Layer 2/3 Pyramidal Neurons , 2007, The Journal of Neuroscience.

[44]  H. Swadlow,et al.  Dendritic Backpropagation and the State of the Awake Neocortex , 2007, The Journal of Neuroscience.

[45]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[46]  Moritz Helmstaedter,et al.  Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. , 2008, Cerebral cortex.

[47]  D. Bar-Yehuda,et al.  Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances. , 2008, Journal of neurophysiology.

[48]  T. Berger,et al.  Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons , 2009, Pflügers Archiv - European Journal of Physiology.

[49]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[50]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[51]  Stephen R. Williams,et al.  Postnatal development of dendritic synaptic integration in rat neocortical pyramidal neurons. , 2009, Journal of neurophysiology.

[52]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[53]  Wulfram Gerstner,et al.  Spike-timing dependent plasticity , 2010, Scholarpedia.

[54]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2022 .