The Computation of Polynomial Greatest Common Divisors Over an Algebraic Number Field

Abstract We present a modular algorithm for computing the greatest common divisor of two polynomials over an algebraic number field. Our algorithm is an application of ideas of Brown and Collins. We use the Weinberger-Rothschild homomorphic scheme with the important change that we avoid factoring the modular image of the minimal polynomial. We perform a computing time analysis and report some empirical computing times.

[1]  George E. Collins,et al.  Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..

[2]  W. S. Brown,et al.  On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors , 1971, JACM.

[3]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[4]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[5]  Scott McCallum An improved projection operation for cylindrical algebraic decomposition (computer algebra, geometry, algorithms) , 1984 .

[6]  W. S. Brown On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.

[7]  Peter J. Weinberger,et al.  Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.

[8]  Cyrenus Matthew Rubald Algorithms for polynomials over a real algebraic number field. , 1973 .

[9]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[10]  Arjen K. Lenstra,et al.  Factoring polynominals over algebraic number fields , 1983, EUROCAL.

[11]  R. Loos Computing in Algebraic Extensions , 1983 .

[12]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[13]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[14]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[15]  M. Mignotte Some Useful Bounds , 1983 .