Simulation Model For The Whole Life Cycle Of The Slime Mold Dictyostelium Discoideum

Slime molds are fascinating organisms, they can either live as an organism consisting out of a single cell or they can form a multi-cellular organism. Therefore from the biological point of view, the slime molds are studied in order to understand the evolutionary step from a single cell organism to a multi-cellular organism. Studies have shown that the behavior of cooperating single cell organisms exhibits synergistic emergent intelligence, for example finding shortest paths. Just recently, simulation and experiments with a real slime mold (Physarum polycephalum) have been used for traveling salesman like problems. In this work we present a simulation model for the slime mold Dictyostelium discoideum. Different to other studies, here the whole life-cycle is modeled and simulated. Very detailed behavioral patterns and parameters are modeled and as result a simulation model is obtained, that shows a behavior very close to the living slime mold. This result is consolidated by extensive verification experiments. As consequence, this model can be used to further study the mechanism of cooperation of single cells, mechanisms of synergy and emergence, and additionally this model offers the possibility to develop more slime mold inspired algorithms.