Dirichlet Forms and Finite Element Methods for the SABR Model

We propose a deterministic numerical method for pricing vanilla options under the SABR stochastic volatility model, based on a finite element discretization of the Kolmogorov pricing equations via non-symmetric Dirichlet forms. Our pricing method is valid under mild assumptions on parameter configurations of the process both in moderate interest rate environments and in near-zero interest rate regimes such as the currently prevalent ones. The parabolic Kolmogorov pricing equations for the SABR model are degenerate at the origin, yielding non-standard partial differential equations, for which conventional pricing methods ---designed for non-degenerate parabolic equations--- potentially break down. We derive here the appropriate analytic setup to handle the degeneracy of the model at the origin. That is, we construct an evolution triple of suitably chosen Sobolev spaces with singular weights, consisting of the domain of the SABR-Dirichlet form, its dual space, and the pivotal Hilbert space. In particular, we show well-posedness of the variational formulation of the SABR-pricing equations for vanilla and barrier options on this triple. Furthermore, we present a finite element discretization scheme based on a (weighted) multiresolution wavelet approximation in space and a $\theta$-scheme in time and provide an error analysis for this discretization.

[1]  Oleg Reichmann,et al.  Numerical option pricing beyond Lévy , 2012 .

[2]  C. Schwab,et al.  Computational Methods for Quantitative Finance: Finite Element Methods for Derivative Pricing , 2013 .

[3]  Antoine Jacquier,et al.  Mass at zero in the uncorrelated SABR model and implied volatility asymptotics , 2015, 1502.03254.

[4]  Philipp Doersek,et al.  A Semigroup Point Of View On Splitting Schemes For Stochastic (Partial) Differential Equations , 2010, 1011.2651.

[5]  M. Hutzenthaler,et al.  Strong convergence rates and temporal regularity for Cox-Ingersoll-Ross processes and Bessel processes with accessible boundaries , 2014, 1403.6385.

[6]  Blanka Nor Horvath,et al.  Robust methods for the SABR model and related processes: analysis, asymptotics and numerics , 2015 .

[7]  Bin Chen,et al.  A LOW-BIAS SIMULATION SCHEME FOR THE SABR STOCHASTIC VOLATILITY MODEL , 2012 .

[8]  D. Dijk,et al.  A comparison of biased simulation schemes for stochastic volatility models , 2008 .

[9]  Miklós Rásonyi,et al.  A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients , 2011 .

[10]  Alexandre Antonov,et al.  Mixing SABR Models for Negative Rates , 2015 .

[11]  M. Forde,et al.  The large-maturity smile for the SABR and CEV-heston models , 2013 .

[12]  Paul Doust No-arbitrage SABR , 2012 .

[13]  Archil Gulisashvili Left-wing asymptotics of the implied volatility in the presence of atoms , 2013 .

[14]  Jim Gatheral,et al.  Fast Ninomiya-Victoir Calibration of the Double-Mean-Reverting Model , 2013 .

[15]  Alexandre Antonov,et al.  Advanced Analytics for the SABR Model , 2012 .

[16]  P. Lions,et al.  Correlations and bounds for stochastic volatility models , 2007 .

[17]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[18]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[19]  B. Jourdain,et al.  Loss of martingality in asset price models with lognormal stochastic volatility , 2022 .

[20]  A. Jacquier,et al.  On the probability of hitting the boundary for Brownian motions on the SABR plane , 2016, 1610.05636.

[21]  Christoph Schwab,et al.  Fast deterministic pricing of options on Lévy driven assets , 2002 .

[22]  Riccardo Rebonato A Simple Approximation for the No-Arbitrage Drifts for LMM-SABR-Family Interest-Rate Models , 2013 .

[23]  Leif Andersen Simple and efficient simulation of the Heston stochastic volatility model , 2008 .

[24]  Nicolas Bouleau,et al.  Dirichlet Forms and Analysis on Wiener Space , 1991 .

[25]  Josef Teichmann,et al.  Functional Analytic (Ir-)Regularity Properties of SABR-type Processes , 2017 .

[26]  Andrew Lesniewski,et al.  Probability Distribution in the SABR Model of Stochastic Volatility , 2015 .

[27]  Alberto Torchinsky,et al.  Real-Variable Methods in Harmonic Analysis , 1986 .

[28]  B. Turesson,et al.  Nonlinear Potential Theory and Weighted Sobolev Spaces , 2000 .

[29]  Aurélien Alfonsi,et al.  On the discretization schemes for the CIR (and Bessel squared) processes , 2005, Monte Carlo Methods Appl..

[30]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[31]  Alexandre Antonov,et al.  The Free Boundary SABR: Natural Extension to Negative Rates , 2015 .

[32]  Nicolas Bouleau,et al.  Energy image density property and the lent particle method for Poisson measures , 2008, 0807.1963.

[33]  B. Muckenhoupt,et al.  Weighted norm inequalities for the Hardy maximal function , 1972 .

[34]  Peter K. Friz,et al.  Semi-closed form cubature and applications to financial diffusion models , 2010 .

[35]  Christoph Schwab,et al.  Wavelet solution of degenerate Kolmogoroff forward equations for exotic contracts in finance , 2013 .

[36]  A. Kufner Weighted Sobolev Spaces , 1985 .

[37]  M. Hutzenthaler,et al.  Local Lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations , 2013, 1309.5595.

[38]  David Hobson,et al.  Comparison results for stochastic volatility models via coupling , 2010, Finance Stochastics.

[39]  Antoine Jacquier,et al.  Shapes of Implied Volatility with Positive Mass at Zero , 2013, SIAM J. Financial Math..

[40]  Richard White,et al.  The SABR/LIBOR Market Model: Pricing, Calibration and Hedging for Complex Interest-Rate Derivatives , 2009 .

[41]  Othmane Islah Solving SABR in Exact Form and Unifying it with LIBOR Market Model , 2009 .

[42]  Rama Cont,et al.  Integro-differential equations for option prices in exponential Lévy models , 2005, Finance Stochastics.

[43]  G. Milstein,et al.  Uniform approximation of the Cox-Ingersoll-Ross process , 2013, Advances in Applied Probability.

[44]  A. E. Lindsay,et al.  Simulation of the CEV process and the local martingale property , 2012, Math. Comput. Simul..

[45]  Martin Forde,et al.  Sharp tail estimates for the correlated SABR model , 2015 .

[46]  F. Delbaen,et al.  Convergence of discretized stochastic (interest rate) processes with stochastic drift term , 1998 .

[47]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[48]  Louis Paulot,et al.  Asymptotic Implied Volatility at the Second Order with Application to the SABR Model , 2009, 0906.0658.

[49]  Bohumír Opic,et al.  How to define reasonably weighted Sobolev spaces , 1984 .

[50]  J. García-cuerva,et al.  Weighted norm inequalities and related topics , 1985 .

[51]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology : Volume 4 Integral Equations and Numerical Methods , 2000 .

[52]  Antoine Jacquier,et al.  An explicit Euler scheme with strong rate of convergence for non-Lipschitz SDEs , 2016 .

[53]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[54]  Rama Cont,et al.  A FINITE DIFFERENCE SCHEME FOR OPTION PRICING IN JUMP DIFFUSION AND EXPONENTIAL L , 2005 .

[55]  Jesper Andreasen,et al.  ZABR -- Expansions for the Masses , 2011 .

[56]  Reinhold Schneider,et al.  Multiresolution weighted norm equivalences and applications , 2004, Numerische Mathematik.

[57]  Albo Carlos Cavalheiro,et al.  Weighted Sobolev Spaces and Degenerate Elliptic Equations , 2008 .

[58]  Christoph Schwab,et al.  Wavelet Discretizations of Parabolic Integrodifferential Equations , 2003, SIAM J. Numer. Anal..

[59]  Patrick S. Hagan,et al.  Arbitrage-Free SABR , 2014 .

[60]  Zhi-Ming Ma,et al.  Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .

[61]  Aurélien Alfonsi,et al.  High order discretization schemes for the CIR process: Application to affine term structure and Heston models , 2010, Math. Comput..

[62]  Caroline Hillairet,et al.  Shapes of Implied Volatility with Positive Mass at Zero , 2016 .

[63]  Kathrin Glau,et al.  Feynman-Kac-Darstellungen zur Optionspreisbewertung in Levy-Modellen , 2010 .

[64]  P. Hagan,et al.  MANAGING SMILE RISK , 2002 .

[65]  L. Szpruch,et al.  An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[66]  Fabien Le Floch,et al.  Finite Difference Techniques for Arbitrage Free SABR , 2014 .

[67]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .