Time Series Prediction Using New Adaptive Kernel Estimators

This short article describes two kernel algorithms of the regression function estimation. First of them is called HASKE and has its own heuristic of the h parameter evaluation. The second is a hybrid algorithm that connects SVM and the HASKE in such way that the definition of local neighborhood bases on the definition of the h–neighborhood from HASKE. Both of them are used as predictors for time series.

[1]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[2]  T. Gasser,et al.  A Flexible and Fast Method for Automatic Smoothing , 1991 .

[3]  Milton S. Boyd,et al.  Designing a neural network for forecasting financial and economic time series , 1996, Neurocomputing.

[4]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[5]  K. Stąpor,et al.  Estymacja jądrowa w predykcji szeregów czasowych , 2008 .

[6]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[7]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[8]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[9]  Greg Shakhnarovich,et al.  Locally Weighted Regression , 2009 .

[10]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[11]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[12]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[13]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[14]  Francis Eng Hock Tay,et al.  Support vector machine with adaptive parameters in financial time series forecasting , 2003, IEEE Trans. Neural Networks.

[15]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[16]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[17]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[18]  Gunnar Rätsch,et al.  Predicting Time Series with Support Vector Machines , 1997, ICANN.

[19]  G. Terrell The Maximal Smoothing Principle in Density Estimation , 1990 .

[20]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[21]  J. Friedman Multivariate adaptive regression splines , 1990 .

[22]  Wulfram Gerstner,et al.  Artificial Neural Networks — ICANN'97 , 1997, Lecture Notes in Computer Science.

[23]  E. Nadaraya On Estimating Regression , 1964 .