Investigating the magnetospheric accretion process in the young pre-transitional disk system DoAr 44 (V2062 Oph)
暂无分享,去创建一个
C. Moutou | J. Berger | G. Duvert | K. Perraut | M. Benisty | J. Donati | C. Dougados | L. Rebull | A. Bayo | J. Bouvier | C. Folsom | E. Alecian | S. Alencar | A. Sousa | K. Pouilly
[1] G. Herbig. The Properties and Problems of T Tauri Stars and Related Objects , 1962 .
[2] M. Dworetsky. A period-finding method for sparse randomly spaced observations or “How long is a piece of string?” , 1983 .
[3] E. Landi Degl'Innocenti,et al. Polarization in spectral lines , 2004 .
[4] J. Skilling,et al. Maximum entropy image reconstruction: general algorithm , 1984 .
[5] D. H. Roberts,et al. Time Series Analysis with Clean - Part One - Derivation of a Spectrum , 1987 .
[6] Scott J. Kenyon,et al. Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .
[7] C. Bertout,et al. Accretion Disks around T Tauri Stars , 1988 .
[8] C. Bertout,et al. Accretion disks around T Tauri stars. II: Balmer emission , 1989 .
[9] M. Camenzind. Magnetized Disk-Winds and the Origin of Bipolar Outflows. , 1990 .
[10] A. Koenigl. Disk accretion onto magnetic T Tauri stars , 1991 .
[11] Nuria Calvet,et al. Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation , 1994 .
[12] B. Reipurth,et al. H emission in pre-main sequence stars. I. An atlas of line profiles , 1996 .
[13] Andrew Collier Cameron,et al. Spectropolarimetric observations of active stars , 1997 .
[14] N. Calvet,et al. The Structure and Emission of the Accretion Shock in T Tauri Stars , 1998 .
[15] L. Hartmann,et al. Magnetospheric Accretion Models for the Hydrogen Emission Lines of T Tauri Stars , 1998 .
[16] G. Wade,et al. High-precision magnetic field measurements of Ap and Bp stars , 2000 .
[17] Brazil.,et al. Profiles of Strong Permitted Lines in Classical T Tauri Stars , 2000, astro-ph/0001322.
[18] Results of the ROTOR-program. I. The long-term photometric variability of classical T Tauri stars , 2006, astro-ph/0611028.
[19] S. Edwards,et al. Helium Emission from Classical T Tauri Stars: Dual Origin in Magnetospheric Infall and Hot Wind , 2001 .
[20] L. Hartmann,et al. Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into Accretion Physics , 2001 .
[21] R. Millan-Gabet,et al. On the interferometric sizes of young stellar objects , 2002 .
[22] He I λ10830 as a Probe of Winds in Accreting Young Stars , 2003, astro-ph/0311289.
[23] M. Osorio,et al. An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Luminosity Functions of Young Clusters: Modeling the Substellar Mass Regime Kinetic Temperatures in the Orion Bar , 2022 .
[24] T. Harries,et al. Emission-line profile modelling of structured T Tauri magnetospheres , 2005, astro-ph/0501106.
[25] The surprising magnetic topology of τ Sco: fossil remnant or dynamo output? , 2006, astro-ph/0606156.
[26] Probing T Tauri Accretion and Outflow with 1 Micron Spectroscopy , 2006, astro-ph/0604006.
[27] Magnetospheric accretion-ejection processes in the classical T Tauri star AA Tauri , 2006, astro-ph/0611787.
[28] Lynne Hillenbrand,et al. Redshifted Absorption at He I λ10830 as a Probe of the Accretion Geometry of T Tauri Stars , 2008, 0807.2483.
[29] T. Harries,et al. 3D simulations of rotationally-induced line variability from a classical T Tauri star with a misaligned magnetic dipole , 2008, 0802.0201.
[30] Kjell Eriksson,et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.
[31] Belgium,et al. Accretion funnels onto weakly magnetized young stars , 2007, 0712.2921.
[32] Geoffrey A. Blake,et al. HIGH-RESOLUTION 5 μm SPECTROSCOPY OF TRANSITIONAL DISKS , 2009 .
[33] Sean M. Andrews,et al. PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS , 2009, 0906.0730.
[34] D. M. Watson,et al. UNVEILING THE STRUCTURE OF PRE-TRANSITIONAL DISKS , 2010, 1005.2365.
[35] L. Hartmann,et al. Modeling the Hα line emission around classical T Tauri stars using magnetospheric accretion and disk wind models , 2010, 1007.3976.
[36] S. Bloemen,et al. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .
[37] Geoffrey A. Blake,et al. CO ROVIBRATIONAL EMISSION AS A PROBE OF INNER DISK STRUCTURE , 2011, 1109.4579.
[38] Catherine Espaillat,et al. RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.
[39] Tim J. Harries,et al. Multidimensional models of hydrogen and helium emission line profiles for classical T Tauri stars: method, tests and examples , 2011, 1102.0828.
[40] E. Poretti,et al. Accretion dynamics in the classical T Tauri star V2129 Ophiuchi , 2012, 1203.6331.
[41] G. A. Wade,et al. Chemical abundances of magnetic and non-magnetic Herbig Ae/Be stars , 2012, 1202.1845.
[42] J. Prieto,et al. THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.
[43] D. Dragomir,et al. Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.
[44] Paul M. Brunet,et al. The Gaia mission , 2013, 1303.0303.
[45] E. Mamajek,et al. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.
[46] Y. Lebreton,et al. Seismic diagnostics for transport of angular momentum in stars. I. Rotational splittings from the pre-main sequence to the red-giant branch. , 2012, 1211.1271.
[47] I. Appenzeller,et al. Inclination effects in T Tauri star spectra , 2013, 1308.3095.
[48] F. Favata,et al. Dynamical star-disk interaction in the young stellar system V354 Monocerotis , 2014, 1405.6988.
[49] J. Bouvier,et al. Line and continuum radiative transfer modelling of AA Tau , 2014, 1406.3989.
[50] L. Testi,et al. X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus , 2013, 1310.2069.
[51] Dublin Institute for Advanced Studies,et al. Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds , 2014, 1406.1428.
[52] L. Hillenbrand,et al. CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264 , 2015, 1509.05354.
[53] F. Favata,et al. CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264 , 2015, 1502.07692.
[54] H. C. Stempels,et al. A major upgrade of the VALD database , 2015 .
[55] Astrophysics,et al. Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA , 2015, 1511.07149.
[56] Gaia Collaboration,et al. The Gaia mission , 2016, 1609.04153.
[57] G. Herczeg,et al. Accretion onto Pre-Main-Sequence Stars , 2016 .
[58] G. Herczeg,et al. Magnetic fields of intermediate mass T Tauri stars , 2017, 1711.05143.
[59] S. Rabien,et al. First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.
[60] C. Moutou,et al. The magnetic propeller accretion regime of LkCa 15 , 2018, Monthly Notices of the Royal Astronomical Society: Letters.
[61] T. A. Lister,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[62] A. Osses,et al. An inner warp in the DoAr 44 T Tauri transition disc , 2018, 1804.02360.
[63] The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr) , 2017, 1711.08636.
[64] Umaa Rebbapragada,et al. The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.
[65] C. Moutou,et al. Inner disk structure of the classical T Tauri star LkCa 15 , 2018, Astronomy & Astrophysics.
[66] G. Hussain,et al. Magnetospheric accretion in the intermediate-mass T Tauri star HQ Tauri , 2019, Astronomy & Astrophysics.
[67] L. Prato,et al. The Mean Magnetic Field Strength of CI Tau , 2019, The Astrophysical Journal.
[68] S. Thibault,et al. SPIRou: NIR velocimetry and spectropolarimetry at the CFHT , 2020, 2008.08949.
[69] W. Brandner,et al. Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY , 2020, Astronomy & Astrophysics.