Fading Evaluation in the mm-Wave Band

A thorough millimeter-wave measurement campaign is carried out in an indoor environment with an aim at characterizing the short-term fading channel behavior. The measurements are conducted in a variety of scenarios, with frequencies ranging from 55 GHz to 65 GHz, in line-of-sight and non-line-of-sight conditions, and combinations of horizontal and vertical polarizations at both transmitter and receiver. A number of fading models are tested, namely Rayleigh, Rice, Nakagami-<inline-formula> <tex-math notation="LaTeX">${m}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${\alpha }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu }$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${\kappa }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu }$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${\eta }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu }$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">${\alpha }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\eta }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\kappa }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu }$ </tex-math></inline-formula>. The statistics under analysis are those characterizing the fading amplitude and the frequency selectivity. In particular, the probability density and cumulative distribution functions for the former and level crossing rate per bandwidth unit for the latter are the respective first- and second-order statistics used. To this end, from the experimental data, the parameters of the models are estimated and the corresponding theoretical curves are plotted and compared with the empirical ones. Whereas the required theoretical formulations of the first-order statistics of these models are already well known, those of the second-order statistics as well as these fitting process in such a band shown here are unprecedented in the literature.

[1]  Daniel Benevides da Costa,et al.  Second-Order Statistics of η-μ Fading Channels: Theory and Applications , 2008, IEEE Transactions on Wireless Communications.

[2]  Jeffrey G. Andrews,et al.  Modeling and Analyzing Millimeter Wave Cellular Systems , 2016, IEEE Transactions on Communications.

[3]  Robert W. Heath,et al.  Five disruptive technology directions for 5G , 2013, IEEE Communications Magazine.

[4]  Tiee-Jian Wu,et al.  A comparative study of model selection criteria for the number of signals , 2008 .

[5]  Theodore S. Rappaport,et al.  Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models , 2017, IEEE Transactions on Antennas and Propagation.

[6]  Christos G. Christodoulou,et al.  Use of Weibull distribution for describing outdoor multipath fading , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[7]  Robert W. Heath,et al.  Measurements of the 60 GHz UE to eNB Channel for Small Cell Deployments , 2017, IEEE Wireless Communications Letters.

[8]  R. Kattenbach,et al.  Investigation of short term statistical distributions for path amplitudes and phases in indoor environment , 1998, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151).

[9]  Yang Zhang,et al.  Measurement and Analytical Study of the Correlation Properties of Subchannel Fading for Noncontiguous Carrier Aggregation , 2014, IEEE Transactions on Vehicular Technology.

[10]  Peter F. M. Smulders,et al.  Statistical Characterization of 60-GHz Indoor Radio Channels , 2009, IEEE Transactions on Antennas and Propagation.

[11]  Lorenzo Rubio,et al.  On Simple Estimators of the α-μ Fading Distribution , 2011, IEEE Transactions on Communications.

[12]  Ali Abdi,et al.  Comparison of the level crossing rate and average fade duration of Rayleigh, Rice and Nakagami fading models with mobile channel data , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[13]  A. Seghouane The Akaike Information Criterion with Parameter Uncertainty , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[14]  P. Vainikainen,et al.  Statistical Channel Models for 60 GHz Radio Propagation in Hospital Environments , 2012, IEEE Transactions on Antennas and Propagation.

[15]  Andrea Giorgetti,et al.  Model Order Selection Based on Information Theoretic Criteria: Design of the Penalty , 2015, IEEE Transactions on Signal Processing.

[16]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[17]  Søren Holdt Jensen,et al.  Bayesian model comparison and the BIC for regression models , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[18]  Himanshu Katiyar,et al.  Performance analysis of OFDM under frequency selective fading in varying power delay profile , 2016, 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES).

[19]  M.D. Yacoub,et al.  The $\alpha$-$\mu$ Distribution: A Physical Fading Model for the Stacy Distribution , 2007, IEEE Transactions on Vehicular Technology.

[20]  Ramjee Prasad,et al.  A new method to measure parameters of frequency-selective radio channels using power measurements , 2001, IEEE Trans. Commun..

[21]  Yu Ted Su,et al.  Model-based channel estimation for OFDM signals in Rayleigh fading , 2002, IEEE Trans. Commun..

[22]  Thomas Zwick,et al.  Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel , 2005, IEEE Transactions on Vehicular Technology.

[23]  Katsuyuki Haneda,et al.  Indoor short-range radio propagation measurements at 60 and 70 GHz , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[24]  Julien Sarrazin,et al.  Near-Body Shadowing Analysis at 60 GHz , 2015, IEEE Transactions on Antennas and Propagation.

[25]  Christoph F. Mecklenbräuker,et al.  In-Vehicle mm-Wave Channel Model and Measurement , 2014, 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall).

[26]  M.D. Yacoub,et al.  The α-η-μ and α-κ-μ Fading Distributions , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.

[27]  Gerry Leversha,et al.  Statistical inference (2nd edn), by Paul H. Garthwaite, Ian T. Jolliffe and Byron Jones. Pp.328. £40 (hbk). 2002. ISBN 0 19 857226 3 (Oxford University Press). , 2003, The Mathematical Gazette.

[28]  Jie Ding,et al.  Model Selection Techniques: An Overview , 2018, IEEE Signal Processing Magazine.

[29]  Michel Daoud Yacoub,et al.  Higher Order Statistics for the $\alpha - \eta - \kappa - \mu$ Fading Model , 2018, IEEE Transactions on Antennas and Propagation.

[30]  Michel Daoud Yacoub,et al.  The α-μ distribution: a general fading distribution , 2002, PIMRC.

[31]  William Scanlon,et al.  Fading characterization of UE to ceiling-mounted access point communications at 60 GHz , 2018 .

[32]  J. Reig,et al.  Fading Evaluation in the 60GHz Band in Line-of-Sight Conditions , 2014 .

[33]  R. S. Cole,et al.  An experimental study of the propagation of 55 GHz millimeter waves in an urban mobile radio environment , 1994 .

[34]  Theodore S. Rappaport,et al.  Spatial and temporal characteristics of 60-GHz indoor channels , 2002, IEEE J. Sel. Areas Commun..

[35]  Ping-Huang Huang,et al.  ON NEW MOMENT ESTIMATION OF PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION USING IT’S CHARACTERIZATION , 2006 .

[36]  M. Yacoub,et al.  On higher order statistics of the Nakagami-m distribution , 1999 .

[37]  Theodore S. Rappaport,et al.  Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design , 2015, IEEE Transactions on Communications.

[38]  Theodore S. Rappaport,et al.  In-building wideband partition loss measurements at 2.5 and 60 GHz , 2004, IEEE Transactions on Wireless Communications.

[39]  Theodore S. Rappaport,et al.  Proposal on Millimeter-Wave Channel Modeling for 5G Cellular System , 2016, IEEE Journal of Selected Topics in Signal Processing.

[40]  Andrea J. Goldsmith,et al.  The Fluctuating Two-Ray Fading Model: Statistical Characterization and Performance Analysis , 2016, IEEE Transactions on Wireless Communications.

[41]  Theodore S. Rappaport,et al.  28 GHz Millimeter-Wave Ultrawideband Small-Scale Fading Models in Wireless Channels , 2015, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).

[42]  W. Scanlon,et al.  Higher-order statistics for k-μ distribution , 2007 .

[43]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[44]  Aniruddha Chandra,et al.  In-Vehicle Channel Measurement, Characterization, and Spatial Consistency Comparison of $\text{30}\hbox{--}\text{11 GHz}$ and $\text{55}\hbox{--}\text{65 GHz}$ Frequency Bands , 2017, IEEE Transactions on Vehicular Technology.

[45]  Michel Daoud Yacoub,et al.  Foundations of Mobile Radio Engineering , 1993 .

[46]  Moon-Soon Choi,et al.  Statistical Characteristics of 60 GHz Wideband Indoor Propagation Channel , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[47]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.