Probing Surface-to-Volume Ratio of an Anisotropic Medium by Diffusion NMR with General Gradient Encoding

Since the seminal paper by Mitra et al., diffusion MR has been widely used in order to estimate surface-to-volume ratios. In this paper, we generalize Mitra’s formula for arbitrary diffusion encoding waveforms, including recently developed q-space trajectory encoding sequences. We show that the surface-to-volume ratio can be significantly misestimated using the original Mitra’s formula without taking into account the applied gradient profile. In order to obtain more accurate estimation in anisotropic samples, we propose an efficient and robust optimization algorithm to design diffusion gradient waveforms with prescribed features. Our results are supported by Monte Carlo simulations.

[1]  P. Basser,et al.  Analytical Expressions for the b Matrix in NMR Diffusion Imaging and Spectroscopy , 1994 .

[2]  T. K. Carne HEAT KERNELS AND SPECTRAL THEORY: (Cambridge Tracts in Mathematics 92) , 1990 .

[3]  Mitra,et al.  Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. , 1995, Physical review. B, Condensed matter.

[4]  Daniel C. Alexander,et al.  Bingham–NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI , 2016, NeuroImage.

[5]  S. Patz,et al.  Probing porous media with gas diffusion NMR. , 1999, Physical review letters.

[6]  S. Jespersen,et al.  Effects of nongaussian diffusion on "isotropic diffusion" measurements: An ex-vivo microimaging and simulation study. , 2017, Journal of magnetic resonance.

[7]  Hui Zhang,et al.  Axon diameter mapping in the presence of orientation dispersion with diffusion MRI , 2011, NeuroImage.

[8]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[9]  C. Sønderby,et al.  Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments , 2013, NMR in biomedicine.

[10]  K. Svoboda,et al.  Time-dependent diffusion of water in a biological model system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Gilkey,et al.  Heat content asymptotics for operators of laplace type with Neumann boundary conditions , 1994 .

[12]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[13]  K. Nicolay,et al.  Single‐shot diffusion trace 1H NMR spectroscopy , 2001, Magnetic resonance in medicine.

[14]  Sune N Jespersen,et al.  The effect of impermeable boundaries of arbitrary geometry on the apparent diffusion coefficient. , 2008, Journal of magnetic resonance.

[15]  Philippe Hantraye,et al.  A new sequence for single‐shot diffusion‐weighted NMR spectroscopy by the trace of the diffusion tensor , 2012, Magnetic resonance in medicine.

[16]  Irving J. Lowe,et al.  A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients , 1980 .

[17]  P. Basser Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images , 1995, NMR in biomedicine.

[18]  Peter B. Gilkey,et al.  Asymptotic Formulae in Spectral Geometry , 2003 .

[19]  Schwartz,et al.  Diffusion propagator as a probe of the structure of porous media. , 1992, Physical review letters.

[20]  Karl G. Helmer,et al.  Determination of ratio of surface area to pore volume from restricted diffusion in a constant field gradient , 1995 .

[21]  Sen,et al.  Effects of microgeometry and surface relaxation on NMR pulsed-field-gradient experiments: Simple pore geometries. , 1992, Physical review. B, Condensed matter.

[22]  Denis S. Grebenkov,et al.  NMR survey of reflected brownian motion , 2007 .

[23]  Daniel Topgaard,et al.  Multidimensional diffusion MRI. , 2017, Journal of magnetic resonance.

[24]  Martijn Froeling,et al.  Techniques and applications of skeletal muscle diffusion tensor imaging: A review , 2016, Journal of magnetic resonance imaging : JMRI.

[25]  John P Mugler,et al.  Measurement of hyperpolarized gas diffusion at very short time scales. , 2007, Journal of magnetic resonance.

[26]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[27]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[28]  Dmitriy A Yablonskiy,et al.  Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Jelle Veraart,et al.  Time-Dependent Diffusion in Prostate Cancer , 2017, Investigative radiology.

[30]  Karl G. Helmer,et al.  Restricted Diffusion in Sedimentary Rocks. Determination of Surface-Area-to-Volume Ratio and Surface Relaxivity , 1994 .

[31]  Partha P. Mitra,et al.  Time-Dependent Diffusion Coefficient of Fluids in Porous Media as a Probe of Surface-to-Volume Ratio , 1993 .

[32]  D. Grebenkov Diffusion MRI/NMR at high gradients: Challenges and perspectives , 2017, Microporous and Mesoporous Materials.

[33]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[34]  S. Lasič,et al.  Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. , 2013, Journal of magnetic resonance.

[35]  T. Kuder,et al.  On the Vanishing of the t-term in the Short-Time Expansion of the Diffusion Coefficient for Oscillating Gradients in Diffusion NMR , 2017, Front. Phys..

[36]  Front , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[37]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[38]  João P de Almeida Martins,et al.  Two-Dimensional Correlation of Isotropic and Directional Diffusion Using NMR. , 2016, Physical review letters.

[39]  O. Reynaud,et al.  Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications , 2017, Front. Phys..

[40]  D. Cory,et al.  Multiple Scattering by NMR , 1999 .

[41]  Dmitry S Novikov,et al.  Surface-to-volume ratio with oscillating gradients. , 2011, Journal of magnetic resonance.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  P. Sen,et al.  Decay of nuclear magnetization by bounded diffusion in a constant field gradient , 1994 .

[44]  E.J Fordham,et al.  Partially restricted diffusion in a permeable sandstone: observations by stimulated echo PFG NMR. , 1994, Magnetic resonance imaging.

[45]  Carl-Fredrik Westin,et al.  Q-space trajectory imaging for multidimensional diffusion MRI of the human brain , 2016, NeuroImage.

[46]  Scott Axelrod,et al.  Nuclear magnetic resonance spin echoes for restricted diffusion in an inhomogeneous field: Methods and asymptotic regimes , 2001 .

[47]  K G Helmer,et al.  The application of porous‐media theory to the investigation of time‐dependent diffusion in in vivo systems , 1995, NMR in biomedicine.

[48]  J. Duerk,et al.  Motion artifact suppression technique (MAST) for MR imaging. , 1987, Journal of computer assisted tomography.

[49]  Carl-Fredrik Westin,et al.  Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors , 2015, NeuroImage.

[50]  Sebastian Vellmer,et al.  Comparative analysis of isotropic diffusion weighted imaging sequences. , 2017, Journal of magnetic resonance.

[51]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[52]  Pabitra N. Sen,et al.  Time-dependent diffusion coefficient as a probe of geometry , 2004 .

[53]  C F Hazlewood,et al.  Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water. , 1976, Biophysical journal.

[54]  A. Song,et al.  Optimized isotropic diffusion weighting , 1995, Magnetic resonance in medicine.

[55]  F. Szczepankiewicz,et al.  Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector , 2014, Front. Physics.

[56]  P. Mitra,et al.  Conventions and nomenclature for double diffusion encoding NMR and MRI , 2016, Magnetic resonance in medicine.

[57]  T. Kuder,et al.  Symmetry of the gradient profile as second experimental dimension in the short-time expansion of the apparent diffusion coefficient as measured with NMR diffusometry. , 2015, Journal of magnetic resonance.

[58]  P. V. van Zijl,et al.  Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle. , 1994, Journal of magnetic resonance. Series B.

[59]  John C Gore,et al.  Dependence of temporal diffusion spectra on microstructural properties of biological tissues. , 2011, Magnetic resonance imaging.

[60]  P. V. van Zijl,et al.  Diffusion Weighting by the Trace of the Diffusion Tensor within a Single Scan , 1995, Magnetic resonance in medicine.

[61]  D. Topgaard Isotropic diffusion weighting in PGSE NMR: Numerical optimization of the q-MAS PGSE sequence , 2013 .

[62]  E. Fieremans,et al.  Validation of surface‐to‐volume ratio measurements derived from oscillating gradient spin echo on a clinical scanner using anisotropic fiber phantoms , 2017, NMR in biomedicine.

[63]  Schwartz,et al.  Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. , 1993, Physical review. B, Condensed matter.

[64]  Denis S. Grebenkov,et al.  Laplacian eigenfunctions in NMR. II. Theoretical advances , 2009 .