Time domain analysis of the weighted distributed order rheological model

[1]  Richard Herrmann Fractional Calculus , 2018, Fractional Calculus.

[2]  Lu Liu,et al.  Variable-order fuzzy fractional PID controller. , 2015, ISA transactions.

[3]  M. Zaky,et al.  Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation , 2014, Nonlinear Dynamics.

[4]  Francesco Mainardi,et al.  George William Scott Blair – the pioneer of fractional calculus in rheology , 2014, 1404.3295.

[5]  Stevan Pilipović,et al.  Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles , 2014 .

[6]  Y. Chen,et al.  Design, implementation and application of distributed order PI control. , 2013, ISA transactions.

[7]  Mario Di Paola,et al.  A discrete mechanical model of fractional hereditary materials , 2013 .

[8]  Wen Chen,et al.  A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures , 2012 .

[9]  Mario Di Paola,et al.  Exact mechanical models of fractional hereditary materials , 2012 .

[10]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[11]  H. Saberi Najafi,et al.  Stability Analysis of Distributed Order Fractional Differential Equations , 2011 .

[12]  Teodor M. Atanackovic,et al.  Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod , 2011 .

[13]  Yangquan Chen,et al.  Application of numerical inverse Laplace transform algorithms in fractional calculus , 2011, J. Frankl. Inst..

[14]  F. Mainardi An historical perspective on fractional calculus in linear viscoelasticity , 2010, 1007.2959.

[15]  Teodor M. Atanackovic,et al.  Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod , 2010, 1005.3379.

[16]  Teodor M. Atanackovic,et al.  Time distributed-order diffusion-wave equation. I. Volterra-type equation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Kai Diethelm,et al.  Numerical analysis for distributed-order differential equations , 2009 .

[18]  L. Shampine Vectorized adaptive quadrature in MATLAB , 2008 .

[19]  A. Kochubei Distributed order calculus and equations of ultraslow diffusion , 2007, math-ph/0703046.

[20]  R. Gorenflo,et al.  The Two Forms of Fractional Relaxation of Distributed Order , 2007, cond-mat/0701131.

[21]  A. Prudnikov,et al.  Operational Calculus and Related Topics , 2006 .

[22]  Wenchang Tan,et al.  Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics , 2006 .

[23]  J. Klafter,et al.  Distributed-Order Fractional Kinetics , 2004, cond-mat/0401146.

[24]  Ralf Metzler,et al.  Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials , 2003 .

[25]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[26]  S. Welch,et al.  Application of Time-Based Fractional Calculus Methods to Viscoelastic Creep and Stress Relaxation of Materials , 1999 .

[27]  R. Metzler,et al.  Generalized viscoelastic models: their fractional equations with solutions , 1995 .

[28]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[29]  Michele Caputo,et al.  Mean fractional-order-derivatives differential equations and filters , 1995, ANNALI DELL UNIVERSITA DI FERRARA.

[30]  Dean G. Duffy,et al.  On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications , 1993, TOMS.

[31]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[32]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[33]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[34]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[35]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[36]  A. Gemant,et al.  XLV. On fractional differentials , 1938 .

[37]  E. C. Titchmarsh Introduction to the Theory of Fourier Integrals , 1938 .

[38]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[39]  R. Gorenflo,et al.  FRACTIONAL RELAXATION AND TIME-FRACTIONAL DIFFUSION OF DISTRIBUTED ORDER , 2006 .

[40]  K. Adolfsson,et al.  On the Fractional Order Model of Viscoelasticity , 2005 .

[41]  E. Soczkiewicz,et al.  Application of Fractional Calculus in the Theory of Viscoelasticity , 2002 .

[42]  G. W. Scott Blair,et al.  VI. An application of the theory of quasi-properties to the treatment of anomalous strain-stress relations , 1949 .

[43]  Computers and Mathematics with Applications Fractional differential equations and related exact mechanical models , 2022 .