ANDREWS–GORDON IDENTITIES AND COMMUTATIVE ALGEBRA

We give a proof of a recent combinatorial conjecture due to the first author, which was discovered in the framework of commutative algebra. This result gives rise to new companions to the famous Andrews–Gordon identities. Our tools involve graded quotient rings, Durfee squares and rectangles for integer partitions, and q-series identities.

[1]  D. Bressoud,et al.  Change of Base in Bailey Pairs , 1999, math/9909053.

[2]  A. Schilling,et al.  An A$_2$ Bailey lemma and Rogers--Ramanujan-type identities , 1998, math/9807125.

[3]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[4]  Leon M. Hall,et al.  Special Functions , 1998 .

[5]  M. Schlosser BASIC HYPERGEOMETRIC SERIES , 2007 .

[6]  R. Baxter,et al.  Hard hexagons: exact solution , 1980 .

[7]  George E. Andrews,et al.  MULTIPLE SERIES ROGERS-RAMANUJAN TYPE IDENTITIES , 1984 .

[8]  H. Mourtada,et al.  Arc spaces and the Rogers–Ramanujan identities , 2011, 1101.4950.

[9]  S. Ole Warnaar,et al.  50 Years of Bailey’s Lemma , 2009, 0910.2062.

[10]  Kristina C. Garrett,et al.  Variants of the Rogers-Ramanujan Identities , 1999 .

[11]  Basil Gordon,et al.  A COMBINATORIAL GENERALIZATION OF THE ROGERS-RAMANUJAN IDENTITIES.* , 1961 .

[12]  Andrew V. Sills,et al.  On identities of the Rogers-Ramanujan type , 2006, 1811.11285.

[13]  Pooneh Afsharijoo Looking for a New Version of Gordon’s Identities , 2019, Annals of Combinatorics.

[14]  J. Shaw Combinatory Analysis , 1917, Nature.

[15]  Jeremy Lovejoy A Bailey lattice , 2003 .

[16]  David M. Bressoud,et al.  A Generalization of the Rogers-Ramanujan Identities for all Moduli , 1979, J. Comb. Theory, Ser. A.

[17]  Michael J. Griffin,et al.  A framework of Rogers–Ramanujan identities and their arithmetic properties , 2014, 1401.7718.

[18]  George E. Andrews,et al.  q-series : their development and application in analysis, number theory, combinatorics, physics, and computer algebra , 1986 .

[19]  H. Mourtada,et al.  Partition Identities and Application to Infinite-Dimensional Gröbner Basis and Vice Versa , 2020, Arc Schemes and Singularities.

[20]  G. Andrews,et al.  An analytic generalization of the rogers-ramanujan identities for odd moduli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.