ANDREWS–GORDON IDENTITIES AND COMMUTATIVE ALGEBRA
暂无分享,去创建一个
Jehanne Dousse | Pooneh Afsharijoo | Fr'ed'eric Jouhet | Hussein Mourtada | H. Mourtada | Jehanne Dousse | F. Jouhet
[1] D. Bressoud,et al. Change of Base in Bailey Pairs , 1999, math/9909053.
[2] A. Schilling,et al. An A$_2$ Bailey lemma and Rogers--Ramanujan-type identities , 1998, math/9807125.
[3] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[4] Leon M. Hall,et al. Special Functions , 1998 .
[5] M. Schlosser. BASIC HYPERGEOMETRIC SERIES , 2007 .
[6] R. Baxter,et al. Hard hexagons: exact solution , 1980 .
[7] George E. Andrews,et al. MULTIPLE SERIES ROGERS-RAMANUJAN TYPE IDENTITIES , 1984 .
[8] H. Mourtada,et al. Arc spaces and the Rogers–Ramanujan identities , 2011, 1101.4950.
[9] S. Ole Warnaar,et al. 50 Years of Bailey’s Lemma , 2009, 0910.2062.
[10] Kristina C. Garrett,et al. Variants of the Rogers-Ramanujan Identities , 1999 .
[11] Basil Gordon,et al. A COMBINATORIAL GENERALIZATION OF THE ROGERS-RAMANUJAN IDENTITIES.* , 1961 .
[12] Andrew V. Sills,et al. On identities of the Rogers-Ramanujan type , 2006, 1811.11285.
[13] Pooneh Afsharijoo. Looking for a New Version of Gordon’s Identities , 2019, Annals of Combinatorics.
[14] J. Shaw. Combinatory Analysis , 1917, Nature.
[15] Jeremy Lovejoy. A Bailey lattice , 2003 .
[16] David M. Bressoud,et al. A Generalization of the Rogers-Ramanujan Identities for all Moduli , 1979, J. Comb. Theory, Ser. A.
[17] Michael J. Griffin,et al. A framework of Rogers–Ramanujan identities and their arithmetic properties , 2014, 1401.7718.
[18] George E. Andrews,et al. q-series : their development and application in analysis, number theory, combinatorics, physics, and computer algebra , 1986 .
[19] H. Mourtada,et al. Partition Identities and Application to Infinite-Dimensional Gröbner Basis and Vice Versa , 2020, Arc Schemes and Singularities.
[20] G. Andrews,et al. An analytic generalization of the rogers-ramanujan identities for odd moduli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.