Optical and Mechanical Properties of MgCl 2 Added Triglycine Sulphate Single Crystals

This paper discusses the optical and mechanical properties of triglycine sulphate (TGS) and MgCl2 added TGS single crystals (McTGS) grown from aqueous solution at room temperature using slow evaporation solution growth technique. The grown crystals were characterized by powder X-ray diffraction technique and the cell parameter values are found to be a = 9.405 A, b = 12.623 A and c = 5.721 A; β = 110.347° with V = 637.001 A3. UV-Vis-NIR study shows the direct type transition is involved in these materials and indirect, phonon energy gap of McTGS crystals have also been calculated, and these values are less than the TGS crystals. Refractive index and real and imaginary part of the dielectric constant have been discussed for grown crystals. The value of interband optical transition and oscillator energy has been determined by analyzing refractive index with incident energy. Vickers microhardness test was used to determine hardness number, fracture toughness, brittleness index, yield strength and types of crack formed in the crystals.

[1]  V. Krishnakumar,et al.  MgCl2 added triglycine sulphate crystals , 2011 .

[2]  C. Sekar,et al.  The effect of nitric acid (HNO3) on growth, spectral, thermal and dielectric properties of triglycine sulphate (TGS) crystal. , 2010, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  N. Theresita Shanthi,et al.  Growth, structural, mechanical, spectral and dielectric characterization of NaCl-added Triglycine sulfate single crystals , 2009 .

[4]  R. Choudhury,et al.  Single crystal neutron diffraction study of triglycine sulphate revisited , 2008 .

[5]  M. F. Bush,et al.  Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: results from infrared action spectroscopy. , 2008, Journal of the American Chemical Society.

[6]  N. Gasanly,et al.  Refractive index, static dielectric constant, energy band gap and oscillator parameters of Ga2SeS single crystals , 2007 .

[7]  H. Mohamed,et al.  Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications , 2006 .

[8]  Jai Singh,et al.  Optical properties of condensed matter and applications , 2006 .

[9]  H. Ali Characterization of a new transparent‐conducting material of ZnO doped ITO thin films , 2005 .

[10]  L. Pintilie,et al.  Doped TGS crystals for IR detection and sensors , 2004 .

[11]  Jacqueline M Cole,et al.  Organic materials for second-harmonic generation: advances in relating structure to function , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  S. Bin Anooz,et al.  Optical absorption spectra and related parameters of ammonium zinc chloride crystal in the antiferroelectric and commensurate phases , 2003 .

[13]  M. Gaffar,et al.  Influence of strontium doping on the indirect band gap and optical constants of ammonium zinc chloride crystals , 2003 .

[14]  P. Santhanaraghavan,et al.  Growth and characterisation of l-cystine doped TGS crystals , 2001 .

[15]  P. Ramasamy,et al.  Growth and characterisation of l-tyrosine-doped TGS crystals , 2000 .

[16]  G. Su,et al.  A new pyroelectric crystal l-lysine-doped TGS (LLTGS) , 2000 .

[17]  A. A. El-Fadl Effect of divalent-ions-doping on the absorption spectra and optical parameters of triglycine sulphate crystals , 1999 .

[18]  A. A. El-Fadl Optical properties of TGS crystals doped with metal ions in the vicinity of phase transition , 1999 .

[19]  C. Subramanian,et al.  Growth and characterization of benzophenone and urea doped triglycine sulphate crystals , 1997 .

[20]  K. K. Sharma,et al.  Microindentation studies of flux-grown ErFeO3 single crystals , 1994 .

[21]  A. Razdan,et al.  Load and directional effects on microhardness and estimation of toughness and brittleness for flux-grown LaBO3 crystals , 1994, Journal of Materials Science.

[22]  A. M. Elkorashy Optical Constants of Tin Sulphide Single Crystals Measured by the Interference Method , 1990 .

[23]  A. Bhalla,et al.  Pyroelectric properties of the modified triglycine sulphate (TGS) single crystals , 1984 .

[24]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[25]  B. Lawn,et al.  Hardness, Toughness, and Brittleness: An Indentation Analysis , 1979 .

[26]  R. Davey,et al.  Growth of triglycine sulphate crystals from aqueous solution on cleaved (010) surfaces , 1975 .

[27]  J. Atkinson,et al.  Metals, ceramics and polymers: Oliver H. Wyatt and David Dew-Hughes Cambridge Univ. Press, London, 1974, 625 pp. £12 , 1975 .

[28]  B. Březina Growth and characterization of solid solutions of ferroelectric TGS single crystals with isomorphous compounds , 1971 .

[29]  M. DiDomenico,et al.  Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials , 1971 .

[30]  S. Hoshino,et al.  CRYSTAL STRUCTURE OF THE FERROELECTRIC PHASE OF (GLYCINE)$sub 3$/CENTER DOT/ H$sub 2$SO$sub 4$ , 1959 .