Symmetries, stability, and control in nonlinear systems and networks.

This paper discusses the interplay of symmetries and stability in the analysis and control of nonlinear dynamical systems and networks. Specifically, it combines standard results on symmetries and equivariance with recent convergence analysis tools based on nonlinear contraction theory and virtual dynamical systems. This synergy between structural properties (symmetries) and convergence properties (contraction) is illustrated in the contexts of network motifs arising, for example, in genetic networks, from invariance to environmental symmetries, and from imposing different patterns of synchrony in a network.

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  J. W. L. GLAISHER American Journal of Mathematics, Pure and Applied , 1880, Nature.

[3]  E. B. Wilson PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. , 1919, Science.

[4]  M. Kelsey “Annual Review of Microbiology” , 1946, Nature.

[5]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[6]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[7]  Journal of Molecular Biology , 1959, Nature.

[8]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[9]  J. W. Schmidt G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations. 85 S. Stockholm 1959. K. Tekniska Högskolans Handlingar , 1961 .

[10]  P. Hartman On Stability in the Large for Systems of Ordinary Differential Equations , 1961, Canadian Journal of Mathematics.

[11]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[12]  H. Kalmus Biological Cybernetics , 1972, Nature.

[13]  Rae Baxter,et al.  Acknowledgments.-The authors would like to , 1982 .

[14]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Freund Introduction to Supersymmetry: Supergravities: locally supersymmetric theories , 1986 .

[16]  Martin Golubitsky,et al.  Symmetric patterns in linear arrays of coupled cells. , 1993, Chaos.

[17]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[18]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[19]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[20]  J. Marsden,et al.  Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .

[21]  N. Brown,et al.  Molecular Microbiology , 1998, NATO ASI Series.

[22]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[23]  M. Hassoun,et al.  Neural processing letters , 2000 .

[24]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[25]  M. Golubitsky,et al.  The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space , 2002 .

[26]  M. Golubitsky,et al.  The Symmetry Perspective , 2002 .

[27]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[28]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[29]  Jean-Jacques E. Slotine,et al.  Modular stability tools for distributed computation and control , 2003 .

[30]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[31]  N. Turner PLOS Biology , 2004, BMJ : British Medical Journal.

[32]  Shane T. Jensen,et al.  The Program of Gene Transcription for a Single Differentiating Cell Type during Sporulation in Bacillus subtilis , 2004, PLoS biology.

[33]  J. Kurths,et al.  Synchronization of two interacting populations of oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[35]  Francesco Bullo,et al.  Controlled symmetries and passive walking , 2005, IEEE Transactions on Automatic Control.

[36]  Philip E. Bourne,et al.  PLoS Computational Biology: A New Community Journal , 2005, PLoS Comput. Biol..

[37]  Ian Stewart,et al.  Patterns of Synchrony in Coupled Cell Networks with Multiple Arrows , 2005, SIAM J. Appl. Dyn. Syst..

[38]  E Oh,et al.  Modular synchronization in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Vipul Periwal,et al.  System Modeling in Cellular Biology: From Concepts to Nuts and Bolts , 2006 .

[40]  Jonathan E Rubin,et al.  Bursting induced by excitatory synaptic coupling in nonidentical conditional relaxation oscillators or square-wave bursters. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  U Alon,et al.  The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. , 2006, Journal of molecular biology.

[42]  M. Golubitsky,et al.  Nonlinear dynamics of networks: the groupoid formalism , 2006 .

[43]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[44]  Jean-Jacques E. Slotine,et al.  Contraction analysis of time-delayed communications and group cooperation , 2006, IEEE Transactions on Automatic Control.

[45]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[46]  Jean-Jacques Slotine,et al.  Neuronal networks and controlled symmetries, a generic framework , 2006, q-bio/0612049.

[47]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[48]  Takashi Odagaki,et al.  Storage capacity and retrieval time of small-world neural networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Gregory Hagen,et al.  Symmetry and Symmetry-Breaking for a Wave Equation with Feedback , 2007, SIAM J. Appl. Dyn. Syst..

[50]  E. Ott,et al.  Network synchronization of groups. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Giuseppe Martinelli Hopfield-Like Neural Nets and Sensor Networks , 2008, Neural Processing Letters.

[52]  Kwang-Hyun Cho,et al.  The biphasic behavior of incoherent feed-forward loops in biomolecular regulatory networks. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[53]  Bonnie L Bassler,et al.  Observing bacteria through the lens of social evolution , 2008, Journal of biology.

[54]  Yuhai Tu,et al.  Modeling the chemotactic response of Escherichia coli to time-varying stimuli , 2008, Proceedings of the National Academy of Sciences.

[55]  Joao B Xavier,et al.  The Evolution of Quorum Sensing in Bacterial Biofilms , 2008, PLoS biology.

[56]  Guy Katriel,et al.  Synchronization of oscillators coupled through an environment , 2008, 0804.3734.

[57]  Kirsten Jung,et al.  Heterogeneity in quorum sensing‐regulated bioluminescence of Vibrio harveyi , 2009, Molecular microbiology.

[58]  Yuri Orlov,et al.  International Journal of Adaptive Control and Signal Processing: Editorial , 2009 .

[59]  M. Arcak On spatially uniform behavior in reaction-diffusion PDE and coupled ODE systems , 2009, 0908.2614.

[60]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[61]  Uri Alon,et al.  Dynamics and variability of ERK2 response to EGF in individual living cells. , 2009, Molecular cell.

[62]  A. Minelli BIO , 2009, Evolution & Development.

[63]  Thomas Arildsen,et al.  Proceedings of the 17th European Signal Processing Conference (EUSIPCO-2009) , 2009 .

[64]  Philippe Martin,et al.  Non-Linear Symmetry-Preserving Observers on Lie Groups , 2007, IEEE Transactions on Automatic Control.

[65]  U. Alon,et al.  The incoherent feedforward loop can provide fold-change detection in gene regulation. , 2009, Molecular cell.

[66]  Lea Goentoro,et al.  Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. , 2009, Molecular cell.

[67]  Nicolas Tabareau,et al.  How Synchronization Protects from Noise , 2007, 0801.0011.

[68]  Rainer Klages,et al.  Applied Dynamical Systems , 2010 .

[69]  L. Tsimring,et al.  A synchronized quorum of genetic clocks , 2009, Nature.

[70]  Massimo Vergassola,et al.  Bacterial strategies for chemotaxis response , 2010, Proceedings of the National Academy of Sciences.

[71]  Eduardo Sontag,et al.  Fold-change detection and scalar symmetry of sensory input fields , 2010, Proceedings of the National Academy of Sciences.

[72]  Sanjay Tyagi,et al.  E. coli, What a Noisy Bug , 2010, Science.

[73]  Giovanni Russo,et al.  Global convergence of quorum-sensing networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Ieee Transactions On Automatic Control, Vol. Ac-2'7, No. 3, June 1982 , .