Polysilicon photonic resonators for large-scale 3D integration of optical networks.

We demonstrate optical microresonators in polycrystalline silicon with quality factors of 20,000. We also demonstrate polycrystalline resonators vertically coupled to crystalline silicon waveguides. Electrically active photonic structures fabricated in deposited polysilicon layers would enable the large-scale integration of photonics with current CMOS microelectronics.

[1]  D. Miller,et al.  Optical interconnects to silicon , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[3]  L. Liao,et al.  Optical transmission losses in polycrystalline silicon strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength , 2000 .

[4]  L. D. Negro,et al.  Light emission from silicon-rich nitride nanostructures , 2006 .

[5]  Hermann A. Haus,et al.  Micron-sized channel-dropping filters using silicon waveguide devices , 1999, Optics East.

[6]  Jurgen Michel,et al.  Light Emission from Silicon , 1996 .

[7]  Larry R. Dalton,et al.  Polymer micro-ring filters and modulators , 2002 .

[8]  J. Denton,et al.  Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth , 1999, IEEE Electron Device Letters.

[9]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[10]  C. Henry,et al.  Low loss Si(3)N(4)-SiO(2) optical waveguides on Si. , 1987, Applied optics.

[11]  D. Marris-Morini,et al.  Incorporation of a Photonic Layer at the Metallizations Levels of a CMOS Circuit , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[12]  Nahum Izhaky,et al.  High-speed optical modulation based on carrier depletion in a silicon waveguide. , 2007, Optics express.

[13]  F. Xia,et al.  Ultracompact optical buffers on a silicon chip , 2007 .

[14]  Luca P. Carloni,et al.  On the Design of a Photonic Network-on-Chip , 2007, First International Symposium on Networks-on-Chip (NOCS'07).

[15]  S. Usui,et al.  XeCl Excimer laser annealing used in the fabrication of poly-Si TFT's , 1986, IEEE Electron Device Letters.

[16]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[17]  Qianfan Xu,et al.  12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. , 2007, Optics express.

[18]  Brent E. Little,et al.  High-Q sificon-based microring resonators fabricated using 248 nm optical lithography , 2000, CLEO 2000.

[19]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[20]  James S. Im,et al.  Sequential lateral solidification of thin silicon films on SiO2 , 1996 .

[21]  T. A. Carbone,et al.  Correlation of ellipsometric volume fraction to polysilicon grain size from transmission electron microscopy , 1999, 10th Annual IEEE/SEMI. Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 99 Proceedings (Cat. No.99CH36295).

[22]  Michal Lipson,et al.  Changing the colour of light in a silicon resonator , 2007 .

[23]  M. Rasras,et al.  Low-Loss Amorphous Silicon Channel Waveguides for Integrated Photonics , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[24]  Low loss polysilicon waveguides for silicon photonics , 1997 .

[25]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[26]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[27]  A. Lui,et al.  Propagation losses of silicon nitride waveguides in the near-infrared range , 2005 .

[28]  A. Harke,et al.  Low-loss singlemode amorphous silicon waveguides , 2005 .

[29]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[30]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[31]  B. Jalali,et al.  Monolithic 3-D silicon photonics , 2006, Journal of Lightwave Technology.