A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis.

Type VI secretion systems (T6SSs) which widely distributed in Gram-negative bacteria have been primarily studied in the context of cell interactions with eukaryotic hosts or other bacteria. We have recently identified a thermoregulated T6SS4 in the enteric pathogen Yersinia pseudotuberculosis. Here we report that OmpR directly binds to the promoter of T6SS4 operon and regulates its expression. Further, we observed that the OmpR-regulated T6SS4 is essential for bacterial survival under acidic conditions and that its expression is induced by low pH. Moreover, we showed that T6SS4 plays a role in pumping H(+) out of the cell to maintain intracellular pH homeostasis. The acid tolerance phenotype of T6SS4 is dependent on the ATPase activity of ClpV4, one of the components of T6SS4. These results not only uncover a novel strategy utilized by Y. pseudotuberculosis for acid resistance, but also reveal that T6SS, a bacteria secretion system known to be functional in protein transportation has an unexpected function in H(+) extrusion under acid conditions.

[1]  A. Kuhn,et al.  Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. , 2012, FEMS microbiology reviews.

[2]  R. Harshey,et al.  Loss of FlhE in the flagellar Type III secretion system allows proton influx into Salmonella and Escherichia coli , 2012, Molecular microbiology.

[3]  F. Narberhaus,et al.  IcmF Family Protein TssM Exhibits ATPase Activity and Energizes Type VI Secretion* , 2012, The Journal of Biological Chemistry.

[4]  G. Jensen,et al.  Type VI secretion requires a dynamic contractile phage tail-like structure , 2012, Nature.

[5]  A. Sjöstedt,et al.  Pathoadaptive Conditional Regulation of the Type VI Secretion System in Vibrio cholerae O1 Strains , 2011, Infection and Immunity.

[6]  Yusuke V. Morimoto,et al.  An energy transduction mechanism used in bacterial flagellar type III protein export , 2011, Nature communications.

[7]  P. Branny,et al.  A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence , 2011, BMC Genomics.

[8]  Francesco Falciani,et al.  A systems biology approach sheds new light on Escherichia coli acid resistance , 2011, Nucleic acids research.

[9]  George Sachs,et al.  Molecular aspects of bacterial pH sensing and homeostasis , 2011, Nature Reviews Microbiology.

[10]  Shiyun Chen,et al.  Cra negatively regulates acid survival in Yersinia pseudotuberculosis. , 2011, FEMS microbiology letters.

[11]  Xihui Shen,et al.  Modulation of a thermoregulated type VI secretion system by AHL-dependent Quorum Sensing in Yersinia pseudotuberculosis , 2011, Archives of Microbiology.

[12]  T. West,et al.  Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions , 2010, PLoS pathogens.

[13]  P. Cotter,et al.  Type VI secretion: not just for pathogenesis anymore. , 2010, Cell host & microbe.

[14]  Shiyun Chen,et al.  Characterization of an aspartate‐dependent acid survival system in Yersinia pseudotuberculosis , 2010, FEBS letters.

[15]  D. Cvitkovitch,et al.  Acid tolerance mechanisms utilized by Streptococcus mutans. , 2010, Future microbiology.

[16]  D. Goodlett,et al.  A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. , 2010, Cell host & microbe.

[17]  I. Holland,et al.  The extraordinary diversity of bacterial protein secretion mechanisms. , 2010, Methods in molecular biology.

[18]  Melanie B. Berkmen,et al.  Cytoplasmic Acidification and the Benzoate Transcriptome in Bacillus subtilis , 2009, PloS one.

[19]  S. Wai,et al.  Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. , 2009, Environmental microbiology.

[20]  M. Telepnev,et al.  Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. , 2009, Microbial pathogenesis.

[21]  I. V. Tóth,et al.  Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. , 2009, International journal of food microbiology.

[22]  Shiyun Chen,et al.  OmpR positively regulates urease expression to enhance acid survival of Yersinia pseudotuberculosis. , 2009, Microbiology.

[23]  Shiyun Chen,et al.  Functional characterization of FlgM in the regulation of flagellar synthesis and motility in Yersinia pseudotuberculosis. , 2009, Microbiology.

[24]  Sabine Ehrt,et al.  Acid Resistance in Mycobacterium tuberculosis , 2009, Journal of bacteriology.

[25]  J. Mekalanos,et al.  Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. , 2009, Cell host & microbe.

[26]  Alexander V. Diemand,et al.  Remodelling of VipA/VipB tubules by ClpV‐mediated threading is crucial for type VI protein secretion , 2009, The EMBO journal.

[27]  S. Pukatzki,et al.  The type VI secretion system: translocation of effectors and effector-domains. , 2009, Current opinion in microbiology.

[28]  R. Fleischmann,et al.  Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. , 2009, Microbiology.

[29]  Frédéric Boyer,et al.  Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? , 2009, BMC Genomics.

[30]  C. V. Rao,et al.  The rate of protein secretion dictates the temporal dynamics of flagellar gene expression , 2008, Molecular microbiology.

[31]  Lorna Wilkinson-White,et al.  A dye-binding assay for measurement of the binding of Cu(II) to proteins. , 2008, Journal of inorganic biochemistry.

[32]  E. Cascales,et al.  The type VI secretion toolkit , 2008, EMBO reports.

[33]  Sophie Bleves,et al.  The bacterial type VI secretion machine: yet another player for protein transport across membranes. , 2008, Microbiology.

[34]  I. Ricard,et al.  Phenotypic analysis of Yersinia pseudotuberculosis 32777 response regulator mutants: new insights into two-component system regulon plasticity in bacteria. , 2008, International journal of medical microbiology : IJMM.

[35]  J. Sha,et al.  Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. , 2008, Microbial pathogenesis.

[36]  Christopher M. Bailey,et al.  Type VI secretion: a beginner's guide. , 2008, Current opinion in microbiology.

[37]  J. Galán Energizing type III secretion machines: what is the fuel? , 2008, Nature Structural &Molecular Biology.

[38]  K. Leung,et al.  Dissection of a type VI secretion system in Edwardsiella tarda , 2007, Molecular microbiology.

[39]  B. Mueller‐Roeber,et al.  Ion homeostasis: plants feel better with proper control , 2007, EMBO reports.

[40]  Joan L. Slonczewski,et al.  pH of the Cytoplasm and Periplasm of Escherichia coli: Rapid Measurement by Green Fluorescent Protein Fluorimetry , 2007, Journal of bacteriology.

[41]  J. Mrázek,et al.  Type VI secretion is a major virulence determinant in Burkholderia mallei , 2007, Molecular microbiology.

[42]  C. Baker-Austin,et al.  Life in acid: pH homeostasis in acidophiles. , 2007, Trends in microbiology.

[43]  A. Margolles,et al.  The F1F0-ATPase of Bifidobacterium animalis is involved in bile tolerance. , 2006, Environmental microbiology.

[44]  S. Crosby,et al.  RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Inouye,et al.  Transcription Regulation of ompF and ompC by a Single Transcription Factor, OmpR* , 2006, Journal of Biological Chemistry.

[46]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[47]  H. Zentgraf,et al.  ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria , 2005, Biological chemistry.

[48]  J. Galán,et al.  Chaperone release and unfolding of substrates in type III secretion , 2005, Nature.

[49]  K. Stingl,et al.  Staying alive overdosed: how does Helicobacter pylori control urease activity? , 2005, International journal of medical microbiology : IJMM.

[50]  T. Meshulam,et al.  Serum-induced lysis ofPseudomonas aeruginosa , 1982, European Journal of Clinical Microbiology.

[51]  R. Faustoferri,et al.  The F-ATPase Operon Promoter of Streptococcus mutans Is Transcriptionally Regulated in Response to External pH , 2004, Journal of bacteriology.

[52]  J. Sexton,et al.  Legionella pneumophila DotU and IcmF Are Required for Stability of the Dot/Icm Complex , 2004, Infection and Immunity.

[53]  M. Loureiro-Dias,et al.  Flow Cytometric Assessment of Membrane Integrity of Ethanol-Stressed Oenococcus oeni Cells , 2002, Applied and Environmental Microbiology.

[54]  M. Jakobsen,et al.  Noninvasive Measurement of Bacterial Intracellular pH on a Single-Cell Level with Green Fluorescent Protein and Fluorescence Ratio Imaging Microscopy , 2002, Applied and Environmental Microbiology.

[55]  J. Foster,et al.  Autoinduction of the ompR response regulator by acid shock and control of the Salmonella enterica acid tolerance response , 2002, Molecular microbiology.

[56]  J. Foster,et al.  OmpR Regulates the Stationary-Phase Acid Tolerance Response of Salmonella enterica Serovar Typhimurium , 2000, Journal of bacteriology.

[57]  S. Atkinson,et al.  A hierarchical quorum‐sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping , 1999, Molecular microbiology.

[58]  J. Frean,et al.  Yersiniosis I: Microbiological and Clinicoepidemiological Aspects of Plague and Non-Plague Yersinia Infections , 1999, European Journal of Clinical Microbiology and Infectious Diseases.

[59]  L. Kenney,et al.  Relative binding affinities of OmpR and OmpR-phosphate at the ompF and ompC regulatory sites. , 1998, Journal of molecular biology.

[60]  M. Inouye,et al.  Purification and characterization of the periplasmic domain of EnvZ osmosensor in Escherichia coli. , 1997, Biochemical and biophysical research communications.

[61]  T. Abee,et al.  A Novel Method for Continuous Determination of the Intracellular pH in Bacteria with the Internally Conjugated Fluorescent Probe 5 (and 6-)-Carboxyfluorescein Succinimidyl Ester , 1996, Applied and environmental microbiology.

[62]  A. Bidani,et al.  pHi regulation in alveolar macrophages: relative roles of Na(+)-H+ antiport and H(+)-ATPase. , 1994, The American journal of physiology.

[63]  M. Igo,et al.  A distant upstream site involved in the negative regulation of the Escherichia coli ompF gene , 1994, Journal of bacteriology.

[64]  Jeffrey H. Miller A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Rela , 1992 .

[65]  A. Bidani,et al.  Cytoplasmic pH in pulmonary macrophages: recovery from acid load is Na+ independent and NEM sensitive. , 1989, The American journal of physiology.

[66]  F. Harold Membranes and Energy Transduction in Bacteria1 1Abbreviations: Δψ, membrane potential; ΔpH, pH gradient; Δp, proton-motive force. These are related by: Δp = Δψ - (23RT/F) ΔpH ≅ Δψ - 60 ΔpH. ANS, l-anilino-8-naphthalene sulfonate; DCCD, N, N'-dicyclohexylcarbodiimide; CCCP, carbonylcyanide-m-chloroph , 1977 .

[67]  G. Sachs,et al.  A nonelectrogenic H+ pump in plasma membranes of hog stomach. , 1976, The Journal of biological chemistry.

[68]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.