Top-down fabrication of silicon nanowire devices for thermoelectric applications: properties and perspectives

In this paper, the most recent achievements in the field of device fabrication, based on nanostructured silicon, will be reviewed. Top-down techniques for silicon nanowire production based on lithography, oxidation and highly anisotropic etching (wet, plasma and metal assisted) will be discussed, illustrating both advantages and drawbacks. In particular, fabrication processes for a massive production of silicon nanowires, organized and interconnected in devices with macroscopic dimensions, will be shown and discussed. These macroscopic devices offer the possibility of exploiting the nanoscale thermoelectric properties of silicon in practical applications. In particular, the reduced thermal conductivity of silicon nanowires, with respect to bulk silicon, makes possible to obtain high efficiencies in the direct conversion of heat into electrical power, with intriguing applications in the field of green energy harvesting. The main experiments elucidating the electrical and thermal properties of silicon nanowire devices will be shown and discussed, and compared with the recent theoretical works developed on the subject.

[1]  A. Waag,et al.  Nanowire silicon as a material for thermoelectric energy conversion , 2012 .

[2]  Zhipeng Huang,et al.  Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density , 2007 .

[3]  Ziyin Lin,et al.  Uniform vertical trench etching on silicon with high aspect ratio by metal-assisted chemical etching using nanoporous catalysts. , 2014, ACS applied materials & interfaces.

[4]  Paolo Bruschi,et al.  Top down fabricated silicon nanowire networks for thermoelectric applications , 2012 .

[5]  N. Geyer,et al.  Metal-assisted electrochemical etching of silicon , 2010, Nanotechnology.

[6]  G. Cheng,et al.  Significant reduction of thermal conductivity in silicon nanowire arrays , 2013, Nanotechnology.

[7]  H. Kosina,et al.  Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si , 2013, Nanotechnology.

[8]  Giovanni Pennelli,et al.  Fabrication of silicon nanostructures by geometry controlled oxidation , 2007 .

[9]  Xing Zhang,et al.  Experimental Investigations on Carrier Transport in Si Nanowire Transistors: Ballistic Efficiency and Apparent Mobility , 2008, IEEE Transactions on Electron Devices.

[10]  A. Vladár,et al.  Silicon nanostructures fabricated by scanning probe oxidation and tetra-methyl ammonium hydroxide etching , 2002 .

[11]  M. Macucci,et al.  Optimization of the thermoelectric properties of nanostructured silicon , 2013 .

[12]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[13]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[14]  Ilsoo Kim,et al.  Thermal conductivity of VLS-grown rough Si nanowires with various surface roughnesses and diameters , 2011 .

[15]  Zhipeng Huang,et al.  Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. , 2008, Nano letters.

[16]  K. Goodson,et al.  Thermal conductivity in porous silicon nanowire arrays , 2012, Nanoscale Research Letters.

[17]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .

[18]  Woo Lee,et al.  Au/Ag bilayered metal mesh as a si etching catalyst for controlled fabrication of si nanowires. , 2011, ACS nano.

[19]  Javier Rodríguez-Viejo,et al.  Micropower thermoelectric generator from thin Si membranes , 2014 .

[20]  T. Yen,et al.  Morphological Control of Single‐Crystalline Silicon Nanowire Arrays near Room Temperature , 2008 .

[21]  A. Waag,et al.  High-Temperature Performance of Stacked Silicon Nanowires for Thermoelectric Power Generation , 2013, Journal of Electronic Materials.

[22]  Eugene E. Haller,et al.  Thermal conductivity of germanium crystals with different isotopic compositions , 1997 .

[23]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[24]  T. Kim,et al.  Co-Implantation and autocompensation in close contact rapid thermal annealing of Si-implanted GaAs:Cr , 1987 .

[25]  Donald T. Morelli,et al.  Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors , 2002 .

[26]  Massimo Piotto,et al.  Fabrication and characterization of silicon nanowires with triangular cross section , 2006 .

[27]  Arun Majumdar,et al.  Thermal conductance of thin silicon nanowires. , 2008, Physical review letters.

[28]  G. Pennelli,et al.  Seebeck coefficient of nanowires interconnected into large area networks. , 2013, Nano letters.

[29]  Natalio Mingo,et al.  Surface roughness and thermal conductivity of semiconductor nanowires: Going below the Casimir limit , 2011, 1103.3601.

[30]  R. V. Martinez,et al.  Silicon nanowire transistor with a channel width of 4 nm fabricated by atomic force microscope nanolithography , 2009, 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO).

[31]  G. Masetti,et al.  Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon , 1983, IEEE Transactions on Electron Devices.

[32]  Fabrication of vertically aligned Si nanowires on Si (100) substrates utilizing metal-assisted etching , 2010 .

[33]  Arden L. Moore,et al.  Phonon backscattering and thermal conductivity suppression in sawtooth nanowires , 2008 .

[34]  S. Solmi,et al.  Ultradense silicon nanowire arrays produced via top-down planar technology , 2011 .

[35]  Yusuf Leblebici,et al.  Prospects for logic-on-a-wire , 2008 .

[36]  Zinovy Dashevsky,et al.  High performance n-type PbTe-based materials for thermoelectric applications , 2005 .

[37]  Arun Majumdar,et al.  Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. , 2010, Nano letters.

[38]  Giovanni Pennelli Fast, high bit number pattern generator for electron and ion beam lithographies. , 2008, The Review of scientific instruments.

[39]  Gengchiau Liang,et al.  Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures , 2010 .

[40]  B. Legrand,et al.  Silicon nanowires with sub 10 nm lateral dimensions: From atomic force microscope lithography based fabrication to electrical measurements , 2002 .

[41]  Shufeng Bai,et al.  Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching , 2008, Nanotechnology.

[43]  Chenglin Yan,et al.  Influence of the Mobility of Pt Nanoparticles on the Anisotropic Etching Properties of Silicon , 2012 .

[44]  Marc G. Ghossoub,et al.  Modeling and theoretical efficiency of a silicon nanowire based thermoelectric junction with area enhancement , 2012 .

[45]  Sanjiv Sinha,et al.  Room-temperature phonon boundary scattering below the Casimir limit , 2011 .

[46]  Claude Lévy-Clément,et al.  Metal-assisted chemical etching of silicon in HF–H2O2 , 2008 .

[47]  E. Pop,et al.  Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. , 2009, Physical review letters.

[48]  S.H.G. Teo,et al.  Si-Nanowire Based Gate-All-Around Nonvolatile SONOS Memory Cell , 2008, IEEE Electron Device Letters.

[49]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[50]  Xiuling Li,et al.  Metal-assisted chemical etching in HF/H2O2 produces porous silicon , 2000 .

[51]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[52]  Jiangtao Hu,et al.  Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires , 1999, Nature.

[53]  N. Fang,et al.  Thermal conductivity of silicon nanowire arrays with controlled roughness , 2012 .

[54]  A. Majumdar,et al.  Quantifying surface roughness effects on phonon transport in silicon nanowires. , 2012, Nano letters.

[55]  G. Pennelli Top down fabrication of long silicon nanowire devices by means of lateral oxidation , 2009 .

[56]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[57]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[58]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[59]  Si nanowire ion-sensitive field-effect transistors with a shared floating gate , 2009 .

[60]  Wolfgang Fichtner,et al.  Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility , 2002 .

[61]  G. Barillaro,et al.  Silicon single-electron transistor fabricated by anisotropic etch and oxidation , 2006 .

[62]  Silicon nanowires fabricated by means of an underetching technique , 2005 .

[63]  Kong Liu,et al.  Ordered silicon nanowires prepared by template-assisted morphological design and metal-assisted chemical etching , 2013 .

[64]  Xi Chen,et al.  Effect of surface roughness on thermal conductivity of silicon nanowires , 2010 .

[65]  A fabrication process for a silicon tunnel barrier with self-aligned gate , 2006 .

[66]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[67]  E. Gogolides,et al.  Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity , 2014, Nanotechnology.

[68]  H. Casimir Note on the conduction of heat in crystals , 1938 .

[69]  Yunjie Yan,et al.  Dendrite‐Assisted Growth of Silicon Nanowires in Electroless Metal Deposition , 2003 .

[70]  Hui Fang,et al.  Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. , 2006, Chemistry.

[71]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[72]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[73]  H J Goldsmid,et al.  The use of semiconductors in thermoelectric refrigeration , 1954 .

[74]  K. Tsujino,et al.  Boring Deep Cylindrical Nanoholes in Silicon Using Silver Nanoparticles as a Catalyst , 2005 .

[75]  Nanostructured Multimetal Granular Thin Films: How to Control Chaos , 2009 .

[76]  Banqiu Wu,et al.  High aspect ratio silicon etch: A review , 2010 .

[77]  M. Madou Fundamentals of microfabrication , 1997 .

[78]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[79]  Luis Fonseca,et al.  Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices , 2012 .

[80]  Z. H. Dughaish Lead telluride as a thermoelectric material for thermoelectric power generation , 2002 .

[81]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[82]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[83]  Ning-Bew Wong,et al.  Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching , 2007 .

[84]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[85]  M. Macucci,et al.  Indirect measurement of thermal conductivity in silicon nanowires , 2014 .

[86]  Scalable Silicon Nanostructuring for Thermoelectric Applications , 2013, Journal of Electronic Materials.

[87]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[88]  P. Sharma,et al.  Directional Etching of Silicon by Silver Nanostructures , 2011 .

[89]  Michio Matsumura,et al.  Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts , 2007 .