ATR-FTIR to distinguish Holocene fumier facies. A perspective from bone diagenesis at El Mirador cave (Sierra de Atapuerca, Spain)

[1]  J. Vergès,et al.  Early sheep herd management in the inland of the Iberian Peninsula: results of the incremental isotopic analyses of dental remains from El Mirador cave (Sierra de Atapuerca, Spain) , 2021, Archaeological and Anthropological Sciences.

[2]  M. Buckley,et al.  Machine learning ATR-FTIR spectroscopy data for the screening of collagen for ZooMS analysis and mtDNA in archaeological bone , 2021 .

[3]  N. Sugiyama,et al.  Establishing a preservation index for bone, dentin, and enamel bioapatite mineral using ATR-FTIR , 2020 .

[4]  A. Benito‐Calvo,et al.  Pen management and livestock activities based on phytoliths, dung spherulites, and minerals from Cova Gran de Santa Linya (Southeastern pre-Pyrenees) , 2020, Archaeological and Anthropological Sciences.

[5]  A. Margaryan,et al.  Screening archaeological bone for palaeogenetic and palaeoproteomic studies , 2020, PloS one.

[6]  Y. S. Erdal,et al.  Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey. , 2020, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[7]  A. Rodríguez-Hidalgo,et al.  Making skull cups: Butchering traces on cannibalised human skulls from five European archaeological sites , 2020 .

[8]  Juan Luis Arsuaga,et al.  Identifying the bone-breaker at the Navalmaíllo Rock Shelter (Pinilla del Valle, Madrid) using machine learning algorithms , 2020 .

[9]  I. Jerman,et al.  ATR-FTIR spectroscopy combined with data manipulation as a pre-screening method to assess DNA preservation in skeletal remains. , 2019, Forensic science international. Genetics.

[10]  S. Talamo,et al.  Saving Old Bones: a non-destructive method for bone collagen prescreening , 2019, Scientific Reports.

[11]  D. González-Aguilera,et al.  Combining machine learning algorithms and geometric morphometrics: A study of carnivore tooth marks , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[12]  José Yravedra,et al.  Classifying agency in bone breakage: an experimental analysis of fracture planes to differentiate between hominin and carnivore dynamic and static loading using machine learning (ML) algorithms , 2019, Archaeological and Anthropological Sciences.

[13]  R. Spengler Dung burning in the archaeobotanical record of West Asia: where are we now? , 2019, Vegetation History and Archaeobotany.

[14]  M. Collins,et al.  Preparation of bone powder for FTIR-ATR analysis: The particle size effect , 2018, Vibrational Spectroscopy.

[15]  E. Cunha,et al.  Heat-induced Bone Diagenesis Probed by Vibrational Spectroscopy , 2018, Scientific Reports.

[16]  Manuel Domínguez-Rodrigo,et al.  Successful classification of experimental bone surface modifications (BSM) through machine learning algorithms: a solution to the controversial use of BSM in paleoanthropology? , 2018, Archaeological and Anthropological Sciences.

[17]  G. Artioli,et al.  A universal curve of apatite crystallinity for the assessment of bone integrity and preservation , 2018, Scientific Reports.

[18]  Lior Rokach,et al.  Ensemble learning: A survey , 2018, WIREs Data Mining Knowl. Discov..

[19]  Manuel Domínguez-Rodrigo,et al.  Distinguishing butchery cut marks from crocodile bite marks through machine learning methods , 2018, Scientific Reports.

[20]  C. Egeland,et al.  Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene , 2018, Proceedings of the National Academy of Sciences.

[21]  M. Collins,et al.  Diagenesis of archaeological bone and tooth , 2018 .

[22]  B. Pavan,et al.  Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. , 2017, Journal of solid state chemistry.

[23]  G. Artioli,et al.  Bone diagenesis variability among multiple burial phases at Al Khiday (Sudan) investigated by ATR-FTIR spectroscopy , 2016 .

[24]  A. Benito‐Calvo,et al.  Formation processes and stratigraphic integrity of the Middle-to-Upper Palaeolithic sequence at Cova Gran de Santa Linya (Southeastern Prepyrenees of Lleida, Iberian Peninsula) , 2016 .

[25]  I. Expósito,et al.  Taphonomic approach to the palynological record of burnt and unburnt samples from El Mirador Cave (Sierra de Atapuerca, Burgos, Spain) , 2016 .

[26]  J. Vergès,et al.  Bone alterations in fumiers: Experimental approach , 2016 .

[27]  E. Allué,et al.  Agriculture and livestock economy among prehistoric herders based on plant macro-remains from El Mirador (Atapuerca, Burgos) , 2016 .

[28]  E. Allué,et al.  Wood uses at El Mirador Cave (Atapuerca, Burgos) based on anthracology and dendrology , 2016 .

[29]  S. Javerzat,et al.  What can infrared spectroscopy do for characterizing organic remnant in fossils , 2016 .

[30]  M. Lozano,et al.  El Mirador cave (Sierra de Atapuerca, Burgos, Spain): a whole perspective , 2016 .

[31]  David E. Friesem Geo-ethnoarchaeology in action , 2016 .

[32]  M. Arriaza,et al.  When felids and hominins ruled at Olduvai Gorge: A machine learning analysis of the skeletal profiles of the non-anthropogenic Bed I sites , 2016 .

[33]  X. Gallet,et al.  Rapid Quantification of Bone Collagen Content by ATR-FTIR Spectroscopy , 2016, Radiocarbon.

[34]  Meez Islam,et al.  The Effect of Soft Tissue on Temperature Estimation from Burnt Bone Using Fourier Transform Infrared Spectroscopy , 2016, Journal of forensic sciences.

[35]  C. Snoeck,et al.  From bone to ash: Compositional and structural changes in burned modern and archaeological bone , 2014 .

[36]  G. Artioli,et al.  Bone diagenesis at the micro-scale: Bone alteration patterns during multiple burial phases at Al Khiday (Khartoum, Sudan) between the Early Holocene and the II century AD , 2014 .

[37]  E. Boaretto,et al.  The taphonomy and preservation of wood and dung ashes found in archaeological cooking installations: case studies from Iron Age Israel , 2014 .

[38]  E. Bartelink,et al.  Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis , 2014 .

[39]  B. Ludes,et al.  Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing , 2014, Analytical and Bioanalytical Chemistry.

[40]  J. Pasteris,et al.  Molecular water in nominally unhydrated carbonated hydroxylapatite: The key to a better understanding of bone mineral , 2014 .

[41]  H. Hollund,et al.  TESTING AN ALTERNATIVE HIGH-THROUGHPUT TOOL FOR INVESTIGATING BONE DIAGENESIS: FTIR IN ATTENUATED TOTAL REFLECTION (ATR) MODE , 2013 .

[42]  Maria Yubero Gómez,et al.  Hàbitat en cova i espai pels ramats ca.6200-6000 BP:La Cova Colomera (Prepirineu de Lleida) durant el Neolític Antic. , 2013 .

[43]  Meez Islam,et al.  A new statistical approach for determining the crystallinity of heat-altered bone mineral from FTIR spectra , 2013 .

[44]  P. Bosch,et al.  Boiled versus unboiled: a study on Neolithic and contemporary human bones , 2011 .

[45]  R. Shahack-Gross,et al.  Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance , 2011 .

[46]  A. Boskey,et al.  Infrared Assessment of Bone Quality: A Review , 2011, Clinical orthopaedics and related research.

[47]  M. Domínguez‐Rodrigo,et al.  How Can Taphonomy Be Defined in the XXI Century , 2011 .

[48]  H. Schwarcz,et al.  New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry , 2010 .

[49]  M. Collins,et al.  Sorting the butchered from the boiled , 2010 .

[50]  Lior Rokach,et al.  Ensemble-based classifiers , 2010, Artificial Intelligence Review.

[51]  A. Pedrotti,et al.  Shepherds and karst: the use of caves and rock-shelters in the Mediterranean region during the Neolithic , 2009 .

[52]  Meez Islam,et al.  The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone , 2009 .

[53]  J. Vergès,et al.  Formation processes through archaeobotanical remains: The case of the Bronze Age levels in El Mirador cave, Sierra de Atapuerca, Spain , 2009 .

[54]  I. Reiche,et al.  Curve-fitting micro-ATR-FTIR studies of the amide I and II bands of type I collagen in archaeological bone materials , 2009 .

[55]  I. Reiche,et al.  Characterization of archaeological burnt bones: contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the ν1ν3 PO4 domain , 2008, Analytical and bioanalytical chemistry.

[56]  J. Pasteris,et al.  Bone and Tooth Mineralization: Why Apatite? , 2008 .

[57]  C. Trueman,et al.  Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones , 2008 .

[58]  Sébastien Lê,et al.  FactoMineR: An R Package for Multivariate Analysis , 2008 .

[59]  J. Mansilla,et al.  THERMAL ALTERATIONS IN ARCHAEOLOGICAL BONES , 2007 .

[60]  M. Lozano,et al.  Evidence for bronze age cannibalism in El Mirador Cave (Sierra de Atapuerca, Burgos, Spain). , 2007, American journal of physical anthropology.

[61]  F. Longstaffe,et al.  Burning and boiling of modern deer bone: Effects on crystallinity and oxygen isotope composition of bioapatite phosphate , 2007 .

[62]  Sixto Rafael Fernández López Taphonomic alteration and evolutionary taphonomy , 2006 .

[63]  S. Weiner,et al.  Geoarchaeology in an urban context: the uses of space in a Phoenician monumental building at Tel Dor (Israel) , 2005 .

[64]  S. Weiner,et al.  Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids , 2004 .

[65]  M. Collins,et al.  A practical approach to the identification of low temperature heated bone using TEM , 2003 .

[66]  S. Weiner,et al.  Geo-Ethnoarchaeology of Pastoral Sites: The Identification of Livestock Enclosures in Abandoned Maasai Settlements , 2003 .

[67]  Robert E. M. Hedges,et al.  Bone diagenesis: an overview of processes , 2002 .

[68]  Andrew R. Millard,et al.  The survival of organic matter in bone: a review , 2002 .

[69]  Andrew R. Millard,et al.  The taphonomy of cooked bone: characterizing boiling and its physico–chemical effects , 2002 .

[70]  Christina M. Nielsen-Marsh,et al.  Patterns of Diagenesis in Bone I: The Effects of Site Environments , 2000 .

[71]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[72]  J. Lee-Thorp,et al.  Alteration of Enamel Carbonate Environments during Fossilization , 1999 .

[73]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[74]  R. Nicholson Bone Degradation in a Compost Heap , 1998 .

[75]  H. Schwarcz,et al.  Infrared and Isotopic Evidence for Diagenesis of Bone Apatite at Dos Pilas, Guatemala: Palaeodietary Implications , 1996 .

[76]  R. Nicholson Bone degradation, burial medium and species representation : Debunking the myths, an experiment-based approach , 1996 .

[77]  N. Miller Seed Eaters of the Ancient Near East: Human or Herbivore? , 1996, Current Anthropology.

[78]  Steven L. Kuhn,et al.  Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone , 1995 .

[79]  P. Villa,et al.  Shepherds and sediments: Geo-ethnoarchaeology of pastoral sites , 1992 .

[80]  H. Bocherens,et al.  Isotopic biogeochemistry (13C,15N) of fossil vertebrate collagen: application to the study of a past food web including Neandertal man , 1991 .

[81]  J. Lee-Thorp,et al.  Aspects of the Chemistry of Modern and Fossil Biological Apatites , 1991 .

[82]  J. Argant,et al.  Pollens, charbons de bois et sédiments : l'action humaine et la végétation, le cas de la grotte d'Antonnaire (Montmaur-en-Diois, Drôme) , 1991 .

[83]  Sixto Rafael Fernández López Taphonomic concepts for a theoretical biochronology , 1991 .

[84]  A. Shemesh Crystallinity and diagenesis of sedimentary apatites , 1990 .

[85]  S. Weiner,et al.  States of preservation of bones from prehistoric sites in the Near East: A survey , 1990 .

[86]  R. Longin New Method of Collagen Extraction for Radiocarbon Dating , 1971, Nature.