Planar Lightwave Devices for WDM

Publisher Summary Optical waveguiding provides efficient interactions in lasers and modulators and novel functionality in waveguide grating routers and the Bragg gratings. These elements are often linked together with waveguides. An overview of photonic integrated circuits that are used in the Wavelength–Division Multiplexed (WDM) optical networks has been provided in the chapter. The main strengths of these integrated devices are the ability to have long interaction lengths, their compact size, their low insertion loss, and, most importantly, their large-volume manufacturability. The chapter also describes a large number of innovative planar devices such as the dynamic gain equalizer, the wavelength selective cross connect, the wavelength add or drop, the dynamic dispersion compensator, and the multifrequency laser. The various waveguide materials—including silica, lithium niobate, semiconductor, and polymer—are also compared. It is noted that the refractive index of silica matches with that of the fiber and the propagation loss is also very low, thus, making silica highly durable and ideal for the fiberoptic systems.

[1]  E. O. Ammann,et al.  Optical Network Synthesis Using Birefringent Crystals.* I. Synthesis of Lossless Networks of Equal-Length Crystals , 1964 .

[2]  Xaveer J. M. Leijtens,et al.  Crosstalk performance of integrated optical cross-connects , 1999 .

[3]  I. Kaminow,et al.  Metal‐diffused optical waveguides in LiNbO3 , 1974 .

[4]  H. Fetterman,et al.  Demonstration of 110 GHz electro-optic polymer modulators , 1997 .

[5]  C.R. Doerr,et al.  Proposed WDM cross connect using a planar arrangement of waveguide grating routers and phase shifters , 1998, IEEE Photonics Technology Letters.

[6]  L. W. Stulz,et al.  Programmable 16-channel add/drop using an interleave-chirped waveguide grating router , 1998 .

[7]  M. Renaud,et al.  InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment , 1992 .

[8]  Mk Meint Smit,et al.  Planar monomode optical couplers based on multimode interference effects , 1992 .

[9]  Rajaram Bhat,et al.  Multistripe Array Grating Integrated Cavity (MAGIC) Laser: A New Semiconductor Laser for WDM Applications , 1992 .

[10]  N. Keil,et al.  Athermal polarization-independent all-polymer arrayed waveguide grating (AWG) multi/demultiplexer , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[11]  C. R. Giles,et al.  1296-port MEMS transparent optical crossconnect with 2.07 petabit/s switch capacity , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[12]  G. Fish,et al.  Widely tunable sampled grating DBR laser with integrated electroabsorption modulator , 1999, IEEE Photonics Technology Letters.

[13]  Akimasa Kaneko,et al.  Novel Method for Controlling Passband Flatness in Optical Transparent Networks with Cascaded AWGS , 1999 .

[14]  C.H. Joyner,et al.  Integrated WDM dynamic power equalizer with potentially low insertion loss , 1998, IEEE Photonics Technology Letters.

[15]  G. Lenz,et al.  Optical all-pass filters for phase response design with applications for dispersion compensation , 1998, IEEE Photonics Technology Letters.

[17]  L. Boivin,et al.  40-channel multi/demultiplexer with dynamic passband shape compensation , 2001, IEEE Photonics Technology Letters.

[18]  C.R. Doerr,et al.  Arrayed waveguide lens wavelength add-drop in silica , 1999, IEEE Photonics Technology Letters.

[19]  M.A. Cappuzzo,et al.  Integrated all-pass filters for tunable dispersion and dispersion slope compensation , 1999, IEEE Photonics Technology Letters.

[20]  Keiji Okamoto,et al.  32×32 arrayed-waveguide grating multiplexer with uniform loss and cyclic frequency characteristics , 1997 .

[21]  H. Toba,et al.  Tunable gain equalization using a Mach-Zehnder optical filter in multistage fiber amplifiers , 1991, IEEE Photonics Technology Letters.

[22]  C.R. Doerr,et al.  40-wavelength planar channel-dropping filter with improved crosstalk , 2001, IEEE Photonics Technology Letters.

[23]  Y. Inoue,et al.  Novel birefringence compensating AWG design , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[24]  Wenhua Lin,et al.  8-wavelength photonic integrated 2/spl times/2 WDM cross-connect switch using 2/spl times/N phased-array waveguide grating (PAWG) multi/demultiplexers , 1997 .

[25]  M. Smit New focusing and dispersive planar component based on an optical phased array , 1988 .

[26]  Koji Ishida,et al.  InGaAsP/InP optical switches using carrier induced refractive index change , 1987 .

[27]  C. Doerr,et al.  Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer , 1999, IEEE Photonics Technology Letters.

[28]  Yasuyuki Inoue,et al.  Polarisation-insensitive arrayed-waveguide gratings using dopant-rich silica-based glass with thermal expansion adjusted to Si substrate , 1997 .

[29]  H. K. Kim,et al.  1.6 Tbit/s (40/spl times/40 Gbit/s) total capacity four-node optical networking using fully programmable A/D devices , 2000 .

[30]  A. F. Milton,et al.  Waveguide Transitions and Junctions , 1988 .

[31]  C. Dragone Efficient N*N star coupler based on Fourier optics , 1988 .

[32]  Bernard Glance,et al.  Applications of the integrated waveguide grating router , 1994 .

[33]  R. Osgood,et al.  Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications , 1991 .

[34]  Urs Fischer,et al.  Singlemode optical switches based on SOI waveguides with large cross-section , 1994 .

[35]  H. Melchior,et al.  Penalty-free polarisation compensation of SiO/sub 2//Si arrayed waveguide grating wavelength multiplexers using stress release grooves , 1998 .

[36]  S. Suzuki,et al.  Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution , 1990 .

[37]  Masashi Abe,et al.  Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate , 1996 .

[38]  C. Doerr,et al.  Simultaneous CW operation of shared angular dispersive element WDM lasers , 1998, IEEE Photonics Technology Letters.

[39]  C.R. Doerr,et al.  Observation of WDM crosstalk in passive semiconductor waveguides , 2001, IEEE Photonics Technology Letters.

[40]  M.K. Smit,et al.  Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits , 1999, IEEE Photonics Technology Letters.

[41]  T. Itoh Numerical techniques for microwave and millimeter-wave passive structures , 1989 .

[42]  K. Okamoto,et al.  Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides , 2000, IEEE Photonics Technology Letters.

[43]  Christopher R. Doerr,et al.  2 /spl times/ 2 wavelength-selective cross connect capable of switching 128 channels in sets of 8 , 2001, OFC 2001.

[44]  C.R. Doerr,et al.  40-wavelength add drop filter , 1999, IEEE Photonics Technology Letters.

[45]  G. R. Hadley,et al.  Wide-angle beam propagation using Pade approximant operators. , 1992, Optics letters.

[46]  U. Koren,et al.  Semiconductor lasers for coherent optical fiber communications , 1990 .

[47]  C.R. Doerr,et al.  Wavelength-division multiplexing cross connect in InP , 1998, IEEE Photonics Technology Letters.

[48]  Y. Takizawa International activities at NTT Learning Systems Corporation: actively utilizing multimedia technology in the global market , 1995 .

[49]  K. Okamoto,et al.  Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns , 1996 .

[50]  B. Little,et al.  Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures , 1997, IEEE Photonics Technology Letters.

[51]  G. Fish,et al.  Compact, 4 x 4 InGaAsP-InP optical crossconnect with a scaleable architecture , 1998, IEEE Photonics Technology Letters.

[52]  Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range , 2001, IEEE Photonics Technology Letters.

[53]  Nicholas C. Andreadakis,et al.  Passband broadening of integrated arrayed waveguide filters using multimode interference couplers , 1996 .

[54]  K. Okamoto,et al.  Arrayed-waveguide grating lasers and their applications to tuning-free wavelength routing , 1996 .

[55]  K. Jinguji,et al.  Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio , 1990 .

[56]  C.G.P. Herben Compact integrated cross connects for wavelength-division multiplexing networks , 2000 .

[57]  L. Eldada,et al.  Thermooptic planar polymer Bragg grating OADMs with broad tuning range , 1999, IEEE Photonics Technology Letters.

[58]  R. Adar,et al.  Polarization independent narrow band Bragg reflection gratings made with silica‐on‐silicon waveguides , 1992 .

[59]  Beam propagation method tailored for step-index waveguides , 2001, IEEE Photonics Technology Letters.

[60]  Wei-Ping Huang,et al.  Efficient and accurate vector mode calculations by beam propagation method , 1993 .

[61]  K. Takiguchi,et al.  16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings , 1995 .

[62]  Martin Zirngibl,et al.  WDM cross-connect architectures with reduced complexity , 1999 .

[63]  Jean-Marc Halbout,et al.  Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect , 1991 .

[64]  Masayuki Okuno,et al.  16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches , 1996 .

[65]  Mk Meint Smit,et al.  Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence , 1991 .

[66]  Masayuki Okuno,et al.  Low loss and high extinction ratio strictly nonblocking 16/spl times/16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology , 2001 .

[67]  F. Coppinger,et al.  Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity , 1997, IEEE Photonics Technology Letters.

[68]  R. Soref,et al.  Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/ , 1991 .

[69]  F. Horst,et al.  Tunable ring resonator dispersion compensators realized in high-refractive-index contrast SiON technology , 2000 .

[70]  K. Petermann,et al.  0.1 dB/cm waveguide losses in single-mode SOI rib waveguides , 1996, IEEE Photonics Technology Letters.

[71]  S. Nilsson,et al.  74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector , 1993, IEEE Photonics Technology Letters.

[72]  C.R. Doerr,et al.  Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer , 2002, IEEE Photonics Technology Letters.

[73]  L. Eldada,et al.  Integrated multichannel OADMs using polymer Bragg grating MZIs , 1998, IEEE Photonics Technology Letters.

[74]  C. Dragone An N*N optical multiplexer using a planar arrangement of two star couplers , 1991, IEEE Photonics Technology Letters.

[75]  C. Dragone Efficient N*N star couplers using Fourier optics , 1989 .

[76]  S. Taniguchi,et al.  TI : LINBO3 ACOUSTO-OPTIC TUNABLE FILTER (AOTF) , 1999 .

[77]  P. Severin Single-mode-fibre passive components made in the fused-head-end technique , 1987 .

[78]  S. Chandrasekhar,et al.  Compact integrated tunable chromatic dispersion compensator with a 4000 ps/nm tuning range , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[79]  C. Dragone Optimum planar bends , 1993 .

[80]  C.R. Doerr,et al.  40-wavelength rapidly digitally tunable laser , 1999, IEEE Photonics Technology Letters.

[81]  S. Chandrasekhar,et al.  An automatic 40-wavelength channelized equalizer , 2000, IEEE Photonics Technology Letters.

[82]  C. Dragone,et al.  Optimum design of a planar array of tapered waveguides , 1990 .

[83]  E. Gini,et al.  Low-loss polarization-insensitive InP-InGaAsP optical space switches for fiber optical communication , 1996, IEEE Photonics Technology Letters.

[84]  Lars Thylén,et al.  Monolithically integrated 44 InGaAsP/InP laser amplifier gate switch arrays , 1992 .

[85]  C.G.H. Roeloffzen,et al.  Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology , 2000, IEEE Photonics Technology Letters.

[86]  M. Zirngibl,et al.  Wavelength selective cross connect using arrayed waveguide lens multi-wavelength filters , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[87]  L. Eldada,et al.  Advances in polymer integrated optics , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[88]  C. Dragone,et al.  Large N x N waveguide grating routers , 2000, Journal of Lightwave Technology.

[89]  Masayuki Okuno,et al.  New silica-based 8 X 8 thermo-optic matrix switch on Si that requires no bias power , 1995 .

[90]  H. Kogelnik Theory of Optical Waveguides , 1988 .

[91]  F. Bilodeau,et al.  Photosensitivity in Optical Fibers , 1993 .

[92]  C. Dragone,et al.  Proposed optical cross connect using a planar arrangement of beam steerers , 1999, IEEE Photonics Technology Letters.

[93]  U. Koren,et al.  Digitally tunable laser based on the integration of a waveguide grating multiplexer and an optical amplifier , 1994, IEEE Photonics Technology Letters.

[94]  Charles Howard Henry,et al.  Monolithic optical waveguide 1.31/1.55 /spl mu/m WDM with -50 dB crosstalk over 100 nm bandwidth , 1995 .

[95]  C. Dragone,et al.  Integrated optics N*N multiplexer on silicon , 1991, IEEE Photonics Technology Letters.

[96]  R. Adar,et al.  Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon , 1992 .