Evidence of a structural phase transition in superconducting SmFeAsO1−xFx from 19F NMR

We report resistivity, magnetization and 19F NMR results in a polycrystalline sample of SmFeAsO0.86F0.14. The resistivity and magnetization data show a sharp drop at 48 K indicating a superconducting transition. The nuclear spin–lattice rate (1/T1) and spin–spin relaxation rate (1/T2) clearly show the existence of a structural phase transition near 163 K in the sample, which also undergoes a superconducting transition. This finding creates interest in exploring whether this is unique for Sm based systems or is also present in other rare-earth based 1111 superconductors.

[1]  C. Slichter The discovery and renaissance of dynamic nuclear polarization , 2014, Reports on progress in physics. Physical Society.

[2]  M. Majumder,et al.  Anisotropic Spin-Fluctuations in SmCoPO Revealed by 31P NMR Measurement , 2012 .

[3]  A. Palenzona,et al.  Microstructural evolution throughout the structural transition in 1111 oxypnictides , 2012, 1204.1167.

[4]  G. Profeta,et al.  Retention of the tetragonal to orthorhombic structural transition in F-substituted SmFeAsO: a new phase diagram for SmFeAs(O(1-x)F(x)). , 2011, Physical review letters.

[5]  S. Katrych,et al.  Strong coupling between Eu 2+ spins and Fe 2 As 2 layers in EuFe 1.9 Co 0.1 As 2 observed with NMR , 2010, 1010.5948.

[6]  P. McMahon,et al.  In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor , 2010, Science.

[7]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[8]  G. Prando,et al.  F19NMR study of the coupling between4fand itinerant electrons in the pnictide superconductorsSmFeAsO1−xFx(0.15≤x≤0.2) , 2010 .

[9]  J. Cadogan,et al.  Coexistence of long-ranged magnetic order and superconductivity in the pnictide superconductor SmFeAsO(1-x)F(x) (x=0, 0.15) , 2009 .

[10]  Jiansheng Wu,et al.  Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides , 2009, 0905.1704.

[11]  S. Sanna,et al.  Magnetic-superconducting phase boundary of SmFeAsO 1-x F x studied via muon spin rotation: Unified behavior in a pnictide family , 2009, 0902.2156.

[12]  J. Brink,et al.  Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors , 2008, 0811.4104.

[13]  A. Yamamoto,et al.  Relevant energy scale of color confinement from lattice QCD , 2008, 0811.3845.

[14]  D. Mohler,et al.  Lattice study of light scalar tetraquarks , 2008, 0810.1759.

[15]  X. H. Chen,et al.  Crystal structure and phase transitions across the metal-superconductor boundary in the SmFeAsO 1-x F x (0≤x≤0.20) family , 2008, 0806.3962.

[16]  C. Hess,et al.  The intrinsic electronic phase diagram of iron-oxypnictide superconductors , 2008, 0811.1601.

[17]  S. Y. Li,et al.  Anomalous transport properties and phase diagram of the FeAs-based SmFeAsO1-xFx superconductors. , 2008, Physical review letters.

[18]  Z. Ren,et al.  Spin-singlet superconductivity with multiple gaps in PrFeAsO0.89F0.11 , 2008, 0806.0249.

[19]  Markus P. Mueller,et al.  Ising and Spin orders in Iron-Based Superconductors , 2008, 0804.4293.

[20]  A. Sefat,et al.  F 19 NMR investigation of the iron pnictide superconductor LaFeAsO 0.89 F 0.11 , 2008, 0804.4026.

[21]  Jiangping Hu,et al.  Theory of electron nematic order in LaFeAsO , 2008, 0804.3843.

[22]  T. Yildirim Origin of the 150-K anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural phase transition. , 2008, Physical review letters.

[23]  B. Keimer,et al.  Electronic Liquid Crystal State in the High-Temperature Superconductor YBa2Cu3O6.45 , 2008, Science.

[24]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[25]  Yoshinori Takahashi,et al.  Spin fluctuations in itinerant electron magnetism , 1985 .