Euclidean number fields of large degree

Let K be a number field, and let R be the ring of algebraic integers in K. We say that K is Euclidean, or that R is Euclidean with respect to the norm. if for every a, beR, bq=O, there exist c, deR such that a=cb+d and N(d)<N(b). Here N denotes the absolute value of the field norm K--+Q. This paper deals with a new technique of proving fields to be Euclidean. The method, which is related to an old idea of Hurwitz [14], is based on the observation that for K to be Euclidean it suffices that R contains many elements all of whose differences are units; see Section 1 for details. Some remarks about the existence of such elements are made in Section 2. In Section 3 we illustrate the method by giving 132 new examples of Euclidean fields of degrees four, five, six, seven and eight. A survey of the known Euclidean fields is given in Section 4. Acknowledgements are due to B. Matzat for making available [1] and [23]; to E.M. Taylor for communicating to me the results of [35] ; and to R van Emde Boas, A.K. Lenstra and R.H. Mak for their help in computing discriminants.

[1]  Michael Pohst,et al.  Berechnung kleiner Diskriminanten total reeller algebraischer Zahlkörper. , 1975 .

[2]  T. Ojala Euclid’s algorithm in the cyclotomic field (₁₆) , 1977 .

[3]  O. O’Meara On the finite generation of linear groups over Hasse domains. , 1965 .

[4]  A. Hurwitz Der Euklidische Divisionssatz in einem endlichen algebraischen Zahlkörper , 1919 .

[5]  H. Lenstra Euclid's Algorithm in Cyclotomic Fields , 1975 .

[6]  S. Lang Algebraic Number Theory , 1971 .

[7]  J. Cassels The inhomogeneous minimum of binary quadratic, ternary cubic and quaternary quartic forms , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  J. Leech Notes on Sphere Packings , 1967, Canadian Journal of Mathematics.

[9]  J. Leech Some Sphere Packings in Higher Space , 1964, Canadian Journal of Mathematics.

[10]  H. Cohn A numerical study of quintics of small discriminant , 1955 .

[11]  T. Nagell Quelques problèmes relatifs aux unités algébriques , 1970 .

[12]  T. Nagell Sur un type particulier d’unités algébriques , 1970 .

[13]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[14]  ON QUARTIC FIELDS OF SIGNATURE ONE WITH SMALL DISCRIMINANT , 1957 .

[15]  T. Ojala Euclid’s algorithm in the cyclotomic field (₁₆) , 1977 .

[16]  Kálmán Győry,et al.  Sur les polynômes à coefficients entiers et de discriminant donné. III. , 2022, Publicationes mathematicae (Debrecen).

[17]  R. Markanda Euclidean rings of algebraic numbers and functions , 1975 .

[18]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[19]  E. Taylor Euclid's Algorithm in cubic fields with complex conjugates , 1976 .

[20]  T. Nagell Sur une propriété des unités d'un corps algébrique , 1964 .

[21]  R. B. Lakein Euclid's algorithm in complex quartic fields , 1972 .

[22]  On totally complex quartic fields with small discriminants , 1957 .