Analysis of uranyl-bearing phases by EXAFS spectroscopy: Interferences, multiple scattering, accuracy of structural parameters, and spectral differences

Abstract As part of a larger study of uranium speciation in complex environmental samples, we have collected and analyzed the U LIII-edge extended X-ray absorption fine structure (EXAFS) spectra of nineteen minerals and compounds containing uranium as the uranyl moiety, UO22+. Analysis of seventeen of these spectra yielded structural parameters for uranyl local environments that agree with their published crystal structures; the clarkeite EXAFS spectrum and published crystal structure do not agree, and zellerite lacks a published structure. EXAFS fitting results for clarkeite show significant variability in the local environment of uranium, indicating that this phase is not truly hexagonal. Although zellerite lacks a published structure, its EXAFS spectrum is quite similar to that of rutherfordine, suggesting a similar uranyl local environment, and possibly a related structure. Our analysis of the uranium EXAFS spectra of the nineteen phases indicates that multiple scattering (MS) contributes significant spectral amplitude, especially MS associated with the uranyl moiety and carbonate and phosphate ligands. The signal from MS associated with bidentate carbonate is strong and ubiquitous, even in aqueous UO2(CO3)34-, suggesting that this signal may serve as an indicator of bidentate carbonate binding to uranyl in adsorption complexes. Multiple atomic shells at similar distances, or split atomic shells-both common features in the structure of uranyl-containing phases-produce interferences in the EXAFS spectrum that reduce the accuracy of the analysis. EXAFS-derived interatomic distances do not differ significantly from those derived from XRD, except when spectral interferences cause systematic errors in the analysis. Spectral differences and similarities have been analyzed using statistical methods. Quantitative analysis of the EXAFS spectra of samples containing multiple uranium phases may be complicated by the similarity of spectra from the same or related uranium-containing mineral groups, and by the possibility that two phases may mask the presence of a third. As EXAFS spectroscopy cannot always unambiguously determine the speciation of uranium in environmental samples, other complementary analytical techniques should be employed as well.

[1]  J. Leckie,et al.  Fate of uranyl in a quaternary system composed of uranyl, citrate, goethite, and Pseudomonas fluorescens. , 2003, Environmental Science and Technology.

[2]  T. Arnold,et al.  Sorption of uranium(VI) onto ferric oxides in sulfate-rich acid waters. , 2003, Environmental science & technology.

[3]  M. Benedetti,et al.  Occurrence of Zn/Al hydrotalcite in smelter-impacted soils from northern France: Evidence from EXAFS spectroscopy and chemical extractions , 2003 .

[4]  F. Veselovský,et al.  Cejkaite, the triclinic polymorph of Na4(UO2)(CO3)3—a new mineral from Jáchymov, Czech Republic , 2003 .

[5]  P. Burns,et al.  CRYSTAL STRUCTURES AND SYNTHESIS OF THE COPPER-DOMINANT MEMBERS OF THE AUTUNITE AND META-AUTUNITE GROUPS: TORBERNITE, ZEUNERITE, METATORBERNITE AND METAZEUNERITE , 2003 .

[6]  S. Conradson,et al.  Grazing incidence XAFS spectroscopy of uranyl sorbed onto TiO2 rutile surfaces , 2003 .

[7]  S. Sutton,et al.  Uranyl Incorporation in Natural Calcite , 2003 .

[8]  M. Denecke,et al.  Grazing incidence (GI) XAFS measurements of Hf(IV) and U(VI) sorption onto mineral surfaces , 2003 .

[9]  P. Burns,et al.  The crystal structure of synthetic autunite, Ca[(UO2)(PO4)]2(H2O)11 , 2003 .

[10]  J. Sieler,et al.  EXAFS and XRD investigations of zeunerite and meta-zeunerite , 2003 .

[11]  Jeremy B. Fein,et al.  X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions , 2002 .

[12]  C. Hennig,et al.  Structure of uranium sorption complexes at montmorillonite edge sites , 2002 .

[13]  C. Clayton,et al.  Association of uranium with iron oxides typically formed on corroding steel surfaces. , 2002, Environmental science & technology.

[14]  J. Hazemann,et al.  Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis , 2002 .

[15]  P. Burns,et al.  The Crystal Structure of Triuranyl Diphosphate Tetrahydrate , 2002 .

[16]  Gordon E. Brown,et al.  An Overview of Synchrotron Radiation Applications to Low Temperature Geochemistry and Environmental Science , 2002 .

[17]  S. Brooks,et al.  Uranyl Surface Complexes Formed on Subsurface Media from DOE Facilities , 2002 .

[18]  J. A. Davis,et al.  Mechanisms of uranium interactions with hydroxyapatite: implications for groundwater remediation. , 2002, Environmental science & technology.

[19]  G. Redden,et al.  Citrate enhanced uranyl adsorption on goethite: An EXAFS analysis , 2001 .

[20]  K. M. Beck,et al.  Coprecipitation of Uranium(VI) with Calcite: XAFS, micro-XAS, and luminescence characterization , 2001 .

[21]  P. Burns A NEW URANYL SILICATE SHEET IN THE STRUCTURE OF HAIWEEITE AND COMPARISON TO OTHER URANYL SILICATES , 2001 .

[22]  Ivana Císařová,et al.  Trigonal Na4[UO2(CO3)3] , 2001 .

[23]  S. Krivovichev,et al.  The crystal structure of Na4(UO2)(CO3)3 and its relationship to schröckingerite , 2001, Mineralogical Magazine.

[24]  M Newville,et al.  EXAFS analysis using FEFF and FEFFIT. , 2001, Journal of synchrotron radiation.

[25]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[26]  G. Bernhard,et al.  Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3(aq.) species , 2001 .

[27]  C. Hennig,et al.  EXAFS investigation of uranium(VI) complexes formed at Bacillus cereus and Bacillus sphaericus surfaces , 2001 .

[28]  G. Brown,et al.  Mineralogy of lead in a soil developed on a Pb-mineralized sandstone (Largentière, France) , 2001 .

[29]  H. Szymczak,et al.  Structural units of cuprates in natural Cu-oxysalts. , 2001, Acta crystallographica. Section A, Foundations of crystallography.

[30]  J. Rytuba,et al.  Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy. , 2000, The Science of the total environment.

[31]  J. Bargar,et al.  Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements , 2000 .

[32]  S. Carroll,et al.  Metal Speciation and Bioavailability in Contaminated Estuary Sediments, Alameda Naval Air Station, California , 2000 .

[33]  P. Allen,et al.  The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite , 2000 .

[34]  A. Francis,et al.  Biotransformation of Uranium Compounds in High Ionic Strength Brine by a Halophilic Bacterium under Denitrifying Conditions , 2000 .

[35]  J. Hazemann,et al.  QUANTITATIVE ZN SPECIATION IN SMELTER-CONTAMINATED SOILS BY EXAFS SPECTROSCOPY , 2000 .

[36]  F. Livens,et al.  Uranium Uptake from Aqueous Solution by Interaction with Goethite, Lepidocrocite, Muscovite, and Mackinawite: An X-ray Absorption Spectroscopy Study , 2000 .

[37]  R. Reeder,et al.  Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies , 2000 .

[38]  I. Grenthe,et al.  Structure and dynamics in the complex ion (UO2)2(CO3)(OH)3 , 2000 .

[39]  B. Schimmelpfennig,et al.  Structure of Uranium(VI) in Strong Alkaline Solutions. A Combined Theoretical and Experimental Investigation , 1999 .

[40]  D. Shuh,et al.  The Structure of U6+ Sorption Complexes on Vermiculite and Hydrobiotite , 1999 .

[41]  R. Ewing,et al.  REFINEMENT OF THE CRYSTAL STRUCTURE OF RUTHERFORDINE , 1999 .

[42]  T. Allard,et al.  STRUCTURAL CHEMISTRY OF URANIUM ASSOCIATED WITH SI, AL, FE GELS IN A GRANITIC URANIUM MINE , 1999 .

[43]  J. Bargar,et al.  Spectroscopic Confirmation of Uranium(VI)−Carbonato Adsorption Complexes on Hematite , 1999 .

[44]  G. A. Parks,et al.  Quantitative speciation of lead in selected mine tailings from Leadville, CO , 1999 .

[45]  S. Conradson,et al.  Chemical Speciation of the Uranyl Ion under Highly Alkaline Conditions. Synthesis, Structures, and Oxo Ligand Exchange Dynamics , 1999 .

[46]  G. Brown,et al.  XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: Importance of adsorption processes , 1999 .

[47]  S. Wasserman,et al.  EXAFS and principal component analysis: a new shell game. , 1998, Journal of synchrotron radiation.

[48]  C. Hennig,et al.  An EXAFS study of uranium(VI) sorption onto silica gel and ferrihydrite , 1998 .

[49]  P. Burns The structure of compreignacite, K 2 (UO 2 ) 3 O 2 (OH) 3 ] 2 (H 2 O) 7 , 1998 .

[50]  P. Burns The structure of boltwoodite and implications of solid solution toward sodium boltwoodite , 1998 .

[51]  G. A. Parks,et al.  Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy , 1998 .

[52]  G. Waychunas,et al.  Rock−Water Interactions Controlling Zinc, Cadmium, and Lead Concentrations in Surface Waters and Sediments, U.S. Tri-State Mining District. 1. Molecular Identification Using X-ray Absorption Spectroscopy , 1998 .

[53]  R. Ewing,et al.  The crystal chemistry of hexavalent uranium; polyhedron geometries, bond-valence parameters, and polymerization of polyhedra , 1997 .

[54]  D. Sayers,et al.  X-ray Absorption Spectroscopy of Lead and Zinc Speciation in a Contaminated Groundwater Aquifer , 1997 .

[55]  A. Ankudinov,et al.  RELATIVISTIC CALCULATIONS OF SPIN-DEPENDENT X-RAY-ABSORPTION SPECTRA , 1997 .

[56]  N. Blaton,et al.  A new method of synthesis of boltwoodite and of formation of sodium boltwoodite, uranophane, sklodowskite and kasolite from boltwoodite , 1997 .

[57]  R. Ewing,et al.  Clarkeite: New chemical and structural data , 1997 .

[58]  G. A. Parks,et al.  XAFS spectroscopic study of uranyl coordination in solids and aqueous solution , 1997 .

[59]  F. Farges,et al.  Coordination of Actinides in Silicate Melts , 1997 .

[60]  S. Conradson,et al.  Thermodynamic models for highly charged aqueous species: Solubility of Th(IV) hydrous oxide in concentrated NaHCO3 and Na2CO3 solutions , 1997 .

[61]  D. Shuh,et al.  Characterization of Hydrous Uranyl Silicate by EXAFS , 1996 .

[62]  Hudson,et al.  Polarized x-ray-absorption spectroscopy of the uranyl ion: Comparison of experiment and theory. , 1996, Physical review. B, Condensed matter.

[63]  Michel Mench,et al.  Direct Determination of Lead Speciation in Contaminated Soils by EXAFS Spectroscopy , 1996 .

[64]  D. Shuh,et al.  Determinations of Uranium Structures by EXAFS: Schoepite and Other U(VI) Oxide Precipitates , 1996 .

[65]  S. Conradson,et al.  Speciation of Uranium in Fernald Soils by Molecular Spectroscopic Methods: Characterization of Untreated Soils , 1996 .

[66]  G. Bernhard,et al.  Synthesis and characterization of uranyl orthosilicate (UO2) 2SiO4 · 2H2O , 1995 .

[67]  W. Lukens,et al.  MULTINUCLEAR NMR, RAMAN, EXAFS, AND X-RAY-DIFFRACTION STUDIES OF URANYL CARBONATE COMPLEXES IN NEAR-NEUTRAL AQUEOUS-SOLUTION - X-RAY STRUCTURE OF C(NH2)(3) (6) (UO2)(3)(CO3)(6) CENTER-DOT-6.5H(2)O , 1995 .

[68]  R. Pattrick,et al.  Identification of pyromorphite in mine‐waste contaminated soils by ATEM and EXAFS , 1994 .

[69]  G. Waychunas,et al.  Uranium(VI) adsorption to ferrihydrite: Application of a surface complexation model , 1994 .

[70]  S. Conradson,et al.  Speciation of uranyl sorbed at multiple binding sites on montmorillonite , 1994 .

[71]  N. Blaton,et al.  The structure and physicochemical characteristics of a synthetic phase compositionally intermediate between liebigite and andersonite , 1994 .

[72]  J. Rehr,et al.  EXTENDED X-RAY ABSORPTION FINE STRUCTURE (EXAFS) ANALYSIS OF DISORDER AND MULTIPLE-SCATTERING IN COMPLEX CRYSTALLINE SOLIDS , 1994 .

[73]  F. Farges,et al.  The structure of aperiodic, metamict (Ca, Th)ZrTi_2O_7 (zirconolite): An EXAFS study of the Zr, Th, and U sites , 1993 .

[74]  J. Bruno,et al.  THE SOLUBILITY OF (UO2)3(PO4)2.4H2O(S) AND THE FORMATION OF U(VI) PHOSPHATE COMPLEXES : THEIR INFLUENCE IN URANIUM SPECIATION IN NATURAL WATERS , 1992 .

[75]  F. Farges,et al.  STRUCTURAL ENVIRONMENTS OF INCOMPATIBLE ELEMENTS IN SILICATE GLASS/MELT SYSTEMS. II: UIV, UV, AND UVI , 1992 .

[76]  L. Charlet,et al.  Sorption and speciation of heavy metals on hydrous Fe and Mn oxides. From microscopic to macroscopic , 1992 .

[77]  A. Dent,et al.  An EXAFS study of uranyl ion in solution and sorbed onto silica and montmorillonite clay colloids , 1992 .

[78]  Tullio Pilati,et al.  The importance of accurate crystal structure determination of uranium minerals. II. Soddyite (UO2)2(SiO4).2H2O , 1992 .

[79]  W. Duax David Harker 1906-1991. , 1992 .

[80]  T. Pilati,et al.  The importance of accurate crystal structure determination of uranium minerals. I. Phosphuranylite KCa(H3O)3(UO2)7(PO4)4O4.8H2O , 1991 .

[81]  D. Ginderow Structure de l'uranophane alpha, Ca(UO2)2(SiO3OH)2•5H2O , 1988 .

[82]  D. Ijdo Redetermination of tristrontium uranate(VI). A Rietveld refinement of neutron powder diffraction data , 1986 .

[83]  Boon K. Teo,et al.  EXAFS: Basic Principles and Data Analysis , 1986 .

[84]  R. Hoppe,et al.  Neues über Oxouranate (VI): Na4UO5 und K4UO5 [1] , 1986 .

[85]  J. C. Taylor,et al.  The crystal structure of saleeite, Mg[UO2PO4]2 · 10H2O , 1986 .

[86]  K. Mereiter The crystal structure of Liebigite, Ca2UO2(CO3)3·∼11H2O , 1982 .

[87]  J. Čejka,et al.  Infrared spectra of rutherfordine and sharpite , 1979 .

[88]  H. Rietveld,et al.  The structure of some alkaline‐earth metal uranates , 1969 .

[89]  R. Coleman,et al.  ZELLERITE AND METAZELLERITE, NEW URANYL CARBONATES. , 1966 .

[90]  V. Veselý,et al.  A study on uranyl phosphates—III solubility products of uranyl hydrogen phosphate, uranyl orthophosphate and some alkali uranyl phosphates , 1965 .

[91]  C. A. Blake,et al.  Studies in the Carbonate-Uranium System , 1956 .

[92]  D. Cromer,et al.  THE LENGTH OF THE URANYL ION IN URANYL CARBONATE , 1955 .

[93]  E. Bernsohn,et al.  The Constitution of the Uranates of Sodium1 , 1952 .