Applications of Bayesian Statistical Methods in Microarray Data Analysis

Microarray technology allows one to measure gene expression levels simultaneously on the whole-genome scale. The rapid progress generates both a great wealth of information and challenges in making inferences from such massive data sets. Bayesian statistical modeling offers an alternative approach to frequentist methodologies, and has several features that make these methods advantageous for the analysis of microarray data. These include the incorporation of prior information, flexible exploration of arbitrarily complex hypotheses, easy inclusion of nuisance parameters, and relatively well developed methods to handle missing data.Recent developments in Bayesian methodology generated a variety of techniques for the identification of differentially expressed genes, finding genes with similar expression profiles, and uncovering underlying gene regulatory networks. Bayesian methods will undoubtedly become more common in the future because of their great utility in microarray analysis.

[1]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[2]  David Maxwell Chickering,et al.  Learning Bayesian Networks is , 1994 .

[3]  D. Hartl,et al.  Bayesian analysis of gene expression levels: statistical quantification of relative mRNA level across multiple strains or treatments , 2002, Genome Biology.

[4]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[5]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[6]  David B. Allison,et al.  A mixture model approach for the analysis of microarray gene expression data , 2002 .

[7]  Nir Friedman,et al.  Context-Specific Bayesian Clustering for Gene Expression Data , 2002, J. Comput. Biol..

[8]  Mario Medvedovic,et al.  Bayesian infinite mixture model based clustering of gene expression profiles , 2002, Bioinform..

[9]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[10]  Paola Sebastiani,et al.  Cluster analysis of gene expression dynamics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[12]  Nir Friedman,et al.  Inferring subnetworks from perturbed expression profiles , 2001, ISMB.

[13]  Atul Butte,et al.  The use and analysis of microarray data , 2002, Nature Reviews Drug Discovery.

[14]  Zhen Zhang,et al.  Applying Classification Separability Analysis to Microarray Data , 2002 .

[15]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[16]  Sylvia Richardson,et al.  Bayesian Hierarchical Model for Identifying Changes in Gene Expression from Microarray Experiments , 2002, J. Comput. Biol..

[17]  Chiara Sabatti,et al.  Co-expression pattern from DNA microarray experiments as a tool for operon prediction , 2002, Nucleic Acids Res..

[18]  A D Long,et al.  Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework , 2001, The Journal of Biological Chemistry.

[19]  Nir Friedman,et al.  Data Analysis with Bayesian Networks: A Bootstrap Approach , 1999, UAI.

[20]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[21]  S. Muta,et al.  Use of gene networks from full genome microarray libraries to identify functionally relevant drug-affected genes and gene regulation cascades. , 2003, DNA research : an international journal for rapid publication of reports on genes and genomes.

[22]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Morris Parametric Empirical Bayes Inference: Theory and Applications , 1983 .

[24]  L. Greller,et al.  The dynamics of molecular networks: applications to therapeutic discovery. , 2001, Drug discovery today.

[25]  Duccio Cavalieri,et al.  Standards for Microarray Data , 2002, Science.

[26]  R. Somogyi,et al.  Gene Expression Microarray Data Analysis for Toxicology Profiling , 2000, Annals of the New York Academy of Sciences.

[27]  A. W. F. EDWARDS,et al.  Statistical Methods in Scientific Inference , 1969, Nature.

[28]  David Page,et al.  Modelling regulatory pathways in E. coli from time series expression profiles , 2002, ISMB.

[29]  Yi Li,et al.  Bayesian automatic relevance determination algorithms for classifying gene expression data. , 2002, Bioinformatics.

[30]  Satoru Miyano,et al.  Estimation of Genetic Networks and Functional Structures Between Genes by Using Bayesian Networks and Nonparametric Regression , 2001, Pacific Symposium on Biocomputing.

[31]  Lee Ann McCue,et al.  Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites , 2003, Nature Biotechnology.

[32]  R. Nadon,et al.  Statistical issues with microarrays: processing and analysis. , 2002, Trends in genetics : TIG.

[33]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Tatsuya Kubokawa,et al.  Shrinkage and modification techniques in estimation of variance and the related problems : A review , 1998 .

[35]  Peter S Linsley,et al.  Recent developments in DNA microarrays. , 2002, Current opinion in microbiology.

[36]  Tommi S. Jaakkola,et al.  Combining Location and Expression Data for Principled Discovery of Genetic Regulatory Network Models , 2001, Pacific Symposium on Biocomputing.

[37]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. W. Hatfield,et al.  Differential analysis of DNA microarray gene expression data , 2003, Molecular microbiology.

[39]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[40]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[41]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[43]  John Quackenbush,et al.  Computational genetics: Computational analysis of microarray data , 2001, Nature Reviews Genetics.

[44]  Katherine S Panageas,et al.  A statistical perspective on gene expression data analysis , 2003, Statistics in medicine.

[45]  On improving standard estimators via linear empirical Bayes methods , 1999 .

[46]  Christina Kendziorski,et al.  On Differential Variability of Expression Ratios: Improving Statistical Inference about Gene Expression Changes from Microarray Data , 2001, J. Comput. Biol..

[47]  E. Davidson,et al.  Modeling transcriptional regulatory networks. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  Doug Fisher,et al.  Learning from Data: Artificial Intelligence and Statistics V , 1996 .

[49]  D. Slonim From patterns to pathways: gene expression data analysis comes of age , 2002, Nature Genetics.

[50]  Kimberly F. Johnson,et al.  Methods of microarray data analysis : papers from CAMDA , 2002 .

[51]  Gregory F. Cooper,et al.  Discovery of Causal Relationships in a Gene-Regulation Pathway from a Mixture of Experimental and Observational DNA Microarray Data , 2001, Pacific Symposium on Biocomputing.

[52]  R. Spang,et al.  Predicting the clinical status of human breast cancer by using gene expression profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  B. Everitt An introduction to finite mixture distributions , 1996, Statistical methods in medical research.

[54]  Frank J. Manion,et al.  Application of Bayesian Decomposition for analysing microarray data , 2002, Bioinform..

[55]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[56]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[57]  Tommi S. Jaakkola,et al.  Using Graphical Models and Genomic Expression Data to Statistically Validate Models of Genetic Regulatory Networks , 2000, Pacific Symposium on Biocomputing.

[58]  P. Krajewski,et al.  Statistical methods for microarray assays. , 2002, Journal of Applied Genetics.

[59]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[60]  Nir Friedman,et al.  Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm , 1999, UAI.

[61]  Pierre Baldi,et al.  Global Gene Expression Profiling in Escherichia coliK12 , 2002, The Journal of Biological Chemistry.

[62]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[63]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  P. Brazhnik,et al.  Gene networks: how to put the function in genomics. , 2002, Trends in biotechnology.

[65]  P. Brazhnik,et al.  Linking the genes: inferring quantitative gene networks from microarray data. , 2002, Trends in genetics : TIG.

[66]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[67]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .