Multi-dimensional fluorescence lifetime measurements

In this study, we present two different approaches that allow multi-wavelength fluorescence lifetime measurements in the time domain. One technique is based on a streak camera system, the other technique is based on a time-correlated singlephoton- counting (TCSPC) approach. The setup consists of a confocal laser-scanning microscope (LSM 510, Zeiss) and a Titanium:Sapphire-laser (Mira 900D, Coherent) that is used for pulsed one- and two-photon excitation. Fluorescence light emitted by the sample is dispersed by a polychromator (250is, Chromex) and recorded by a streak camera (C5680 with M5677 sweep unit, Hamamatsu Photonics) or a 16 channel TCSPC detector head (PML-16, Becker & Hickl) connected to a TCSPC imaging module (SPC-730/SPC-830, Becker & Hickl). With these techniques it is possible to acquire fluorescence decays in several wavelength regions simultaneously. We applied these methods to Förster resonance energy transfer (FRET) measurements and discuss the advantages over fluorescence techniques that are already well established in the field of confocal microscopy, such as spectrally resolved intensity measurements or single-wavelength fluorescence lifetime measurements.

[1]  P. French,et al.  Time-resolved fluorescence microscopy , 2005 .

[2]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[3]  D. Payan,et al.  Detection of programmed cell death using fluorescence energy transfer. , 1998, Nucleic acids research.

[4]  Mark A Rizzo,et al.  An improved cyan fluorescent protein variant useful for FRET , 2004, Nature Biotechnology.

[5]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[6]  A. Periasamy,et al.  Fluorescence resonance energy transfer microscopy: a mini review. , 2001, Journal of biomedical optics.

[7]  Hans C. Gerritsen,et al.  Fluorescence lifetime imaging using a confocal laser scanning microscope , 1992 .

[8]  A. Draaijer,et al.  Fluorescence lifetime imaging of oxygen in living cells , 2007, Journal of Fluorescence.

[9]  B. Masters,et al.  Molecular Imaging, FRET Microscopy and Spectroscopy , 2006 .

[10]  H Szmacinski,et al.  Fluorescence lifetime imaging microscopy: homodyne technique using high-speed gated image intensifier. , 1994, Methods in enzymology.

[11]  M. Vidal A Biological Atlas of Functional Maps , 2001, Cell.

[12]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[13]  Klaus Benndorf,et al.  FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera , 2004, Nature Biotechnology.

[14]  L. Kelbauskas,et al.  Internalization of Aggregated Photosensitizers by Tumor Cells: Subcellular Time‐resolved Fluorescence Spectroscopy on Derivatives of Pyropheophorbide‐a Ethers and Chlorin e6 under Femtosecond One‐ and Two‐photon Excitation ¶ , 2002, Photochemistry and photobiology.

[15]  F. Tsuji,et al.  Aequorea green fluorescent protein , 1994, FEBS letters.

[16]  Axel Bergmann,et al.  Fluorescence lifetime images and correlation spectra obtained by multidimensional TCSPC , 2005, SPIE BiOS.

[17]  M. J. Cormier,et al.  Primary structure of the Aequorea victoria green-fluorescent protein. , 1992, Gene.

[18]  M. Fordham,et al.  An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy , 1987, The Journal of cell biology.

[19]  G. Patterson,et al.  Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. , 1997, Biophysical journal.

[20]  Th. Förster,et al.  Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie , 1949 .

[21]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[22]  Enrico Gratton,et al.  Time-resolved fluorescence microscopy using two-photon excitation , 1995 .

[23]  Wei Zhou,et al.  High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy. , 2002, Biochemical and biophysical research communications.

[24]  Mary E. Dickinson,et al.  Sensitive imaging of spectrally overlapping flourochromes using the LSM 510 META , 2002, SPIE BiOS.

[25]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[26]  Axel Bergmann,et al.  Multi‐dimensional fluorescence lifetime and FRET measurements , 2007, Microscopy research and technique.

[27]  Th. Förster,et al.  Versuche zum zwischenmolekularen Übergang von Elektronenanregungsenergie , 1949, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.

[28]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[29]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[30]  J D Hares,et al.  Fluorescence lifetime imaging with picosecond resolution for biomedical applications. , 1998, Optics letters.

[31]  A. Bergmann,et al.  Multispectral fluorescence lifetime imaging by TCSPC , 2007, Microscopy research and technique.

[32]  R. Clegg Fluorescence resonance energy transfer. , 2020, Current Opinion in Biotechnology.

[33]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[34]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[35]  Thomas M. Nordlund,et al.  Streak Cameras for Time-Domain Fluorescence , 2002 .

[36]  Marc Tramier,et al.  Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells , 2006, Microscopy research and technique.

[37]  Axel Bergmann,et al.  Interaction of PSD-95 with potassium channels visualized by fluorescence lifetime-based resonance energy transfer imaging. , 2004, Journal of biomedical optics.