Counting planar maps, coloured or uncoloured

We present recent results on the enumeration of q-coloured planar maps, where each monochromatic edge carries a weight \nu. This is equivalent to weighting each map by its Tutte polynomial, or to solving the q-state Potts model on random planar maps. The associated generating function, obtained by Olivier Bernardi and the author, is differentially algebraic. That is, it satisfies a (non-linear) differential equation. The starting point of this result is a functional equation written by Tutte in 1971, which translates into enumerative terms a simple recursive description of planar maps. The proof follows and adapts Tutte's solution of properly q-coloured triangulations (1973-1984). We put this work in perspective with the much better understood enumeration of families of uncoloured planar maps, for which the recursive approach almost systematically yields algebraic generating functions. In the past 15 years, these algebraicity properties have been explained combinatorially by illuminating bijections between maps and families of plane trees. We survey both approaches, recursive and bijective. Comparing the coloured and uncoloured results raises the question of designing bijections for coloured maps. No complete bijective solution exists at the moment, but we present bijections for certain specialisations of the general problem. We also show that for these specialisations, Tutte's functional equation is much easier to solve that in the general case. We conclude with some open questions.

[1]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[2]  Doron Zeilberger,et al.  A proof of Julian West's conjecture that the number of two-stacksortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!) , 1992, Discret. Math..

[3]  Hubert Saleur,et al.  Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups , 1990 .

[4]  Jean-Marc DAUL Q-states Potts model on a random planar lattice , 1995 .

[5]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[6]  J. F. Le Gall,et al.  Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .

[7]  Mireille Bousquet-M'elou,et al.  Walks in the quarter plane: Kreweras’ algebraic model , 2004, math/0401067.

[8]  Olivier Bernardi,et al.  Parenthesis , 2020, X—The Problem of the Negro as a Problem for Thought.

[9]  Bodo Lass,et al.  Orientations Acycliques et le Polyno^me Chromatique , 2001, Eur. J. Comb..

[10]  Dominique Poulalhon,et al.  A bijection for triangulations of a polygon with interior points and multiple edges , 2003, Theor. Comput. Sci..

[11]  Edward A. Bender,et al.  The Asymptotic Number of Rooted Maps on a Surface. II. Enumeration by Vertices and Faces , 1993, J. Comb. Theory, Ser. A.

[12]  Dominique Poulalhon,et al.  A note on Bipartite Eulerian Planar Maps , 2001 .

[13]  Marc Noy,et al.  A solution to the tennis ball problem , 2005, Theor. Comput. Sci..

[14]  Grégory Miermont,et al.  Scaling limits of random planar maps with large faces , 2011 .

[15]  Éric Fusy,et al.  Dissections and trees, with applications to optimal mesh encoding and to random sampling , 2005, SODA '05.

[16]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[17]  S. Beraha,et al.  Limits of chromatic zeros of some families of maps , 1980, J. Comb. Theory B.

[18]  D. Welsh,et al.  The Potts model and the Tutte polynomial , 2000 .

[19]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[20]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[21]  H. Temperley Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .

[22]  Vladimir Kazakov,et al.  The ising model on a random planar lattice: The structure of the phase transition and the exact critical exponents , 1987 .

[23]  Mireille Bousquet-Mélou,et al.  Walks confined in a quadrant are not always D-finite , 2003, Theor. Comput. Sci..

[24]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[25]  Mireille Bousquet-Mélou,et al.  Four Classes of Pattern-Avoiding Permutations Under One Roof: Generating Trees with Two Labels , 2003, Electron. J. Comb..

[26]  W. G. Brown,et al.  Enumeration of Non-Separable Planar Maps , 1963, Canadian Journal of Mathematics.

[27]  L. Lipshitz,et al.  D-finite power series , 1989 .

[28]  Stefan Felsner,et al.  Bijections for Baxter families and related objects , 2008, J. Comb. Theory A.

[29]  M. Aigner,et al.  Proofs from "The Book" , 2001 .

[30]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[31]  Nicolas Bonichon,et al.  Baxter permutations and plane bipolar orientations , 2008, Electron. Notes Discret. Math..

[32]  W. T. Tutte Chromatic sums for rooted planar triangulations: the cases $lambda =1$ and $lambda =2$ , 1973 .

[33]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[34]  Zhicheng Gao The number of degree restricted maps on general surfaces , 1993, Discret. Math..

[35]  Edward A. Bender,et al.  The number of loopless planar maps , 1985, Discret. Math..

[36]  Gilles Schaeer,et al.  Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .

[37]  A. Guionnet,et al.  Combinatorial aspects of matrix models , 2005, math/0503064.

[38]  J. Bouttier,et al.  Combinatorics of bicubic maps with hard particles , 2005 .

[39]  J. Bouttier,et al.  The three-point function of planar quadrangulations , 2008, 0805.2355.

[40]  Ian P. Goulden,et al.  Transitive Factorizations in the Symmetric Group, and Combinatorial Aspects of Singularity Theory , 2000, Eur. J. Comb..

[41]  W. T. Tutte On the enumeration of planar maps , 1968 .

[42]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[43]  Guillaume Chapuy,et al.  A bijection for covered maps, or a shortcut between Harer-Zagierʼs and Jacksonʼs formulas , 2011, J. Comb. Theory, Ser. A.

[44]  W. T. Tutte,et al.  Dichromatic Sums Revisited , 1996, J. Comb. Theory, Ser. B.

[45]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[46]  Marni Mishna Classifying lattice walks restricted to the quarter plane , 2009, J. Comb. Theory, Ser. A.

[47]  Mireille Bousquet-Mélou,et al.  Polynomial equations with one catalytic variable, algebraic series and map enumeration , 2006, J. Comb. Theory, Ser. B.

[48]  Doron Zeilberger,et al.  The Umbral Transfer-Matrix Method. I. Foundations , 2000, J. Comb. Theory, Ser. A.

[49]  R. Mullin,et al.  On the Enumeration of Tree-Rooted Maps , 1967, Canadian Journal of Mathematics.

[50]  T. Walsh,et al.  Counting rooted maps by genus II , 1972 .

[51]  Paul Martin,et al.  The Potts model and the Beraha numbers , 1987 .

[52]  Philippe Flajolet,et al.  Basic analytic combinatorics of directed lattice paths , 2002, Theor. Comput. Sci..

[53]  Olivier Bernardi On Triangulations with High Vertex Degree , 2006 .

[54]  Mireille Bousquet-Mélou,et al.  Enumeration of Planar Constellations , 2000, Adv. Appl. Math..

[55]  Mireille Bousquet-Mélou,et al.  Generating functions for generating trees , 2002, Discret. Math..

[56]  W. T. Tutte Chromatic sums revisited , 1995 .

[57]  Vladimir Kazakov,et al.  Ising model on a dynamical planar random lattice: Exact solution , 1986 .

[58]  Marni Mishna,et al.  Walks with small steps in the quarter plane , 2008, 0810.4387.

[59]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[60]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[61]  Dominique Poulalhon,et al.  Optimal Coding and Sampling of Triangulations , 2003, Algorithmica.

[62]  W. G. Brown On the existence of square roots in certain rings of power series , 1965 .

[63]  Mireille Bousquet-Mélou,et al.  A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..

[64]  Gilles Schaeffer,et al.  A Bijective Census of Nonseparable Planar Maps , 1998, J. Comb. Theory, Ser. A.

[65]  T. Walsh,et al.  Counting rooted maps by genus III: Nonseparable maps , 1975 .

[66]  G. Parisi,et al.  Planar diagrams , 1978 .

[67]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[68]  G. Bonnet,et al.  The Potts-q random matrix model: loop equations, critical exponents, and rational case , 1999 .

[69]  Doron Zeilberger The Umbral Transfer-Matrix Method , III : Counting Animals , 2001 .

[70]  Jean-Franccois Marckert,et al.  Invariance principles for random bipartite planar maps , 2005, math/0504110.

[71]  N. Wormald,et al.  Enumeration of Rooted Cubic Planar Maps , 2002 .

[72]  J. Richard,et al.  Complex-temperature phase diagram of Potts and RSOS models , 2005, cond-mat/0511059.

[73]  J. Bouttier,et al.  Counting Colored Random Triangulations , 2002 .

[74]  I. Goulden,et al.  The KP hierarchy, branched covers, and triangulations , 2008, 0803.3980.

[75]  Marni Mishna,et al.  Two non-holonomic lattice walks in the quarter plane , 2009, Theor. Comput. Sci..

[76]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[77]  Nicholas C. Wormald,et al.  Counting 5‐connected planar triangulations , 2001, J. Graph Theory.

[78]  J. L. Gall,et al.  The topological structure of scaling limits of large planar maps , 2006, math/0607567.

[79]  Mireille Bousquet-Mélou,et al.  Forest-Like Permutations , 2006, math/0603617.

[80]  Abdelkader Mokkadem,et al.  Limit of normalized quadrangulations: The Brownian map , 2006 .

[81]  P. Fendley,et al.  Tutte chromatic identities from the Temperley-Lieb algebra , 2007, 0711.0016.

[82]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[83]  Alberto Del Lungo,et al.  Left ternary trees and non-separable rooted planar maps , 2000, Theor. Comput. Sci..

[84]  Edward A. Bender,et al.  The asymptotic number of rooted maps on a surface , 1986, J. Comb. Theory, Ser. A.

[85]  P. Zinn-Justin The Dilute Potts Model on Random Surfaces , 1999 .

[86]  Éric Fusy,et al.  A bijection for triangulations, quadrangulations, pentagulations, etc , 2010, J. Comb. Theory, Ser. A.

[87]  Olivier Bernardi Bijective counting of Kreweras walks and loopless triangulations , 2007, J. Comb. Theory, Ser. A.

[88]  W. T. Tutte,et al.  On the Enumeration of Rooted Non-Separable Planar Maps , 1964, Canadian Journal of Mathematics.

[89]  Éric Fusy,et al.  Bijective counting of plane bipolar orientations and Schnyder woods , 2008, Eur. J. Comb..

[90]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[91]  J. Bouttier,et al.  Blocked edges on Eulerian maps and mobiles: application to spanning trees, hard particles and the Ising model , 2007, math/0702097.

[92]  THE KERNEL METHOD: A COLLECTION OF EXAMPLES , 2003 .

[93]  W. G. Brown Enumeration of Triangulations of the Disk , 1964 .

[94]  W. T. Tutte On a pair of functional equations of combinatorial interest , 1978 .

[95]  Valery A. Liskovets,et al.  Enumeration of eulerian and unicursal planar maps , 2004, Discret. Math..

[96]  Gilles Schaeffer,et al.  The degree distribution in bipartite planar maps: applications to the Ising model , 2002 .

[97]  L. M.,et al.  A Method of Integration over Matrix Variables , 2005 .

[98]  Mireille Bousquet-Mélou,et al.  Multi-statistic enumeration of two-stack sortable permutations , 1998, Electron. J. Comb..

[99]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[100]  Jesper Lykke Jacobsen,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. II. Extended Results for Square-Lattice Chromatic Polynomial , 2001 .

[101]  E. Guitter,et al.  Coloring random triangulations , 1998 .

[102]  P. Francesco,et al.  Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.

[103]  Thomas Zaslavsky,et al.  ON THE INTERPRETATION OF WHITNEY NUMBERS THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES, NON-RADON PARTITIONS, AND ORIENTATIONS OF GRAPHS , 1983 .

[104]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[105]  Edward A. Bender,et al.  The Number of Degree-Restricted Rooted Maps on the Sphere , 1994, SIAM J. Discret. Math..

[106]  W. G. Brown,et al.  Enumeration of Quadrangular Dissections of the Disk , 1965, Canadian Journal of Mathematics.

[107]  Mireille Bousquet-Mélou,et al.  Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..

[108]  J. Bouttier,et al.  Statistics of geodesics in large quadrangulations , 2007, 0712.2160.

[109]  Rodney Baxter Dichromatic Polynomials and Potts Models Summed Over Rooted Maps , 2000 .

[110]  Mireille Bousquet-Mélou,et al.  Counting colored planar maps: Algebraicity results , 2009, J. Comb. Theory, Ser. B.