An adaptive multiscale phase field method for brittle fracture

Abstract In the present work, a multiscale finite element method (MsFEM) is coupled with hybrid phase field method to simulate brittle fracture problems. This approach along with adaptive meshing, known as adaptive multiscale phase field method (AMPFM), is quite useful for local mesh refinement. During mesh refinement, the degrees of freedom of coarse-mesh and fine-mesh are linked together using multiscale basis functions. The proposed mesh refinement approach automatically tracks a propagating crack and refines the domain in the vicinity of the crack by utilizing the values of the current phase field variable and its increment. This approach when applied to simulate fracture behaviour of heterogeneous structures containing uniformly distributed small-size discontinuities (voids/inclusions) leads to a significant reduction in the memory and CPU time. Various numerical problems are solved using the proposed AMPFM, and results are compared with the standard PFM and available literature results.

[1]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[2]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[3]  Thomas Wick,et al.  Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity , 2016 .

[4]  Kazuyoshi Fushinobu,et al.  Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy , 2016 .

[5]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[6]  Thomas J. R. Hughes,et al.  A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework , 2014 .

[7]  B. Bourdin Numerical implementation of the variational formulation for quasi-static brittle fracture , 2007 .

[8]  Masato Kimura,et al.  Phase Field Model for Mode III Crack Growth in Two Dimensional Elasticity , 2009, Kybernetika.

[9]  Günther Meschke,et al.  Crack propagation criteria in the framework of X‐FEM‐based structural analyses , 2007 .

[10]  Ralf Müller,et al.  A continuum phase field model for fracture , 2010 .

[11]  Mary F. Wheeler,et al.  Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model , 2016 .

[12]  Cv Clemens Verhoosel,et al.  A phase‐field model for cohesive fracture , 2013 .

[13]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[14]  Hong-wu Zhang,et al.  Extended multiscale finite element method for mechanical analysis of heterogeneous materials , 2010 .

[15]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[16]  Sohichi Hirose,et al.  Quasi-static crack propagation simulation by an enhanced nodal gradient finite element with different enrichments , 2017 .

[17]  Irene Arias,et al.  Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions , 2012 .

[18]  Timon Rabczuk,et al.  Abaqus implementation of phase-field model for brittle fracture , 2015 .

[19]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[20]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[21]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[22]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[23]  Zhen Wang,et al.  Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM , 2016, Adv. Eng. Softw..

[24]  D. Ngo,et al.  Finite Element Analysis of Reinforced Concrete Beams , 1967 .

[25]  Rolf Mahnken,et al.  Goal‐oriented adaptive refinement for phase field modeling with finite elements , 2013 .

[26]  B. K. Mishra,et al.  Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA , 2016 .

[27]  Ralf Müller,et al.  A NEW FINITE ELEMENT TECHNIQUE FOR A PHASE FIELD MODEL OF BRITTLE FRACTURE , 2011 .

[28]  Paul A. Wawrzynek,et al.  Quasi-automatic simulation of crack propagation for 2D LEFM problems , 1996 .

[29]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[30]  B. Nestler,et al.  Phase-field modeling of crack propagation in multiphase systems , 2016 .

[31]  Sohichi Hirose,et al.  An extended consecutive-interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics , 2015 .

[32]  J. L. Curiel-Sosa,et al.  3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks , 2017 .

[33]  B. K. Mishra,et al.  A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials , 2017 .

[34]  I. Singh,et al.  A two-scale stochastic framework for predicting failure strength probability of heterogeneous materials , 2017 .

[35]  A. Karma,et al.  Phase-field model of mode III dynamic fracture. , 2001, Physical review letters.

[36]  Bijay K. Mishra,et al.  The numerical simulation of fatigue crack growth using extended finite element method , 2012 .

[37]  Hongwu Zhang,et al.  A new multiscale computational method for elasto-plastic analysis of heterogeneous materials , 2012 .

[38]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[39]  T. Rabczuk,et al.  Phase-field modeling of fracture in linear thin shells , 2014 .

[40]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[41]  Guowei Liu,et al.  Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model , 2016 .

[42]  Xiaopeng Xu,et al.  Numerical simulations of dynamic crack growth along an interface , 1996 .

[43]  Chuanzeng Zhang,et al.  Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method , 2014 .

[44]  Julien Yvonnet,et al.  A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure , 2015 .

[45]  R. Müller,et al.  A discussion of fracture mechanisms in heterogeneous materials by means of configurational forces in a phase field fracture model , 2016 .

[46]  Hongwu Zhang,et al.  A Concurrent Multiscale Method for Simulation of Crack Propagation , 2015 .

[47]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .