Ja n 20 02 Application of the τ-function theory of Painlevé equations to random matrices :

With 〈·〉 denoting an average with respect to the eigenvalue PDF for the Laguerre unitary ensemble, the object of our study is ẼN(I ;a, μ) := 〈 ∏N l=1 χ (l) (0,∞)\I (λ − λl) 〉 for I = (0, s) and I = (s,∞), where χ (l) I = 1 for λl ∈ I and χ (l) I = 0 otherwise. Using Okamoto’s development of the theory of the Painlevé V equation, it is shown that ẼN (I ;a, μ) is a τ -function associated with the Hamiltonian therein, and so can be characterised as the solution of a certain second order second degree differential equation, or in terms of the solution of certain difference equations. The cases μ = 0 and μ = 2 are of particular interest as they correspond to the cumulative distribution and density function respectively for the smallest and largest eigenvalue. In the case I = (s,∞), ẼN(I ; a, μ) is simply related to an average in the Jacobi unitary ensemble, and this in turn is simply related to certain averages over the orthogonal group, the unitary symplectic group and the circular unitary ensemble. The latter integrals are of interest for their combinatorial content. Also considered are the hard edge and soft edge scaled limits of ẼN (I ;a, μ). In particular, in the hard edge scaled limit it is shown that the limiting quantity E((0, s); a, μ) can be evaluated as a τ -function associated with the Hamiltonian in Okamoto’s theory of the Painlevé III equation.

[1]  P. Forrester Log-Gases and Random Matrices , 2010 .

[2]  P. Forrester,et al.  τ-function evaluation of gap probabilities in orthogonal and symplectic matrix ensembles , 2002, math-ph/0203049.

[3]  P. Forrester,et al.  LETTER TO THE EDITOR: Random walks and random fixed-point free involutions , 2001, math/0107128.

[4]  P. Forrester,et al.  Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.

[5]  C. Tracy,et al.  On the distributions of the lengths of the longest monotone subsequences in random words , 1999, math/9904042.

[6]  P. Forrester,et al.  Gap, probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles , 2000, math-ph/0008032.

[7]  Y. Ohta,et al.  Discrete integrable systems from continuous Painlevé equations through limiting procedures , 2000 .

[8]  P. Forrester Painlevé transcendent evaluation of the scaled distribution of the smallest eigenvalue in the Laguerre orthogonal and symplectic ensembles , 2000, nlin/0005064.

[9]  C. Cosgrove Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .

[10]  K. M. Tamizhmani,et al.  On a transcendental equation related to Painlevé III, and its discrete forms , 2000 .

[11]  I. Johnstone On the distribution of the largest principal component , 2000 .

[12]  Mark Adler,et al.  Integrals over classical groups, random permutations, toda and Toeplitz lattices , 1999, math/9912143.

[13]  Y. Ohta,et al.  Determinant Formulas for the Toda and Discrete Toda Equations , 1999, solv-int/9908007.

[14]  J. Baik,et al.  The asymptotics of monotone subsequences of involutions , 1999, math/9905084.

[15]  L. Haine,et al.  The Jacobi polynomial ensemble and the Painlevé VI equation , 1999 .

[16]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[17]  C. Tracy,et al.  Random Unitary Matrices, Permutations and Painlevé , 1998, math/9811154.

[18]  M. Noumi,et al.  Symmetries in the fourth Painlevé equation and Okamoto polynomials , 1997, Nagoya Mathematical Journal.

[19]  M. Noumi,et al.  Higher order Painlevé equations of type $A^{(1)}_l$ , 1998, math/9808003.

[20]  P. Forrester,et al.  Random matrix ensembles with an effective extensive external charge , 1998, cond-mat/9803355.

[21]  Eric M. Rains,et al.  Increasing Subsequences and the Classical Groups , 1998, Electron. J. Comb..

[22]  Humihiko Watanabe Defining variety and birational canonical transformations of the fifth Painleve equation , 1998 .

[23]  M. Noumi,et al.  Higher Order Painlevé Equations of Type A , 1998 .

[24]  J. Satsuma,et al.  A study of the alternate discrete Painlevé II equation , 1996 .

[25]  C. Tracy,et al.  On orthogonal and symplectic matrix ensembles , 1995, solv-int/9509007.

[26]  P. Moerbeke,et al.  Random Matrices, Vertex Operators and the Virasoro-algebra , 1995 .

[27]  Peter J. Forrester,et al.  Complex Wishart matrices and conductance in mesoscopic systems: Exact results , 1994 .

[28]  V. E. Adler,et al.  Nonlinear chains and Painleve´ equations , 1994 .

[29]  P. Forrester Exact results and universal asymptotics in the Laguerre random matrix ensemble , 1994 .

[30]  C. Tracy,et al.  Fredholm determinants, differential equations and matrix models , 1993, hep-th/9306042.

[31]  C. Tracy,et al.  Level spacing distributions and the Bessel kernel , 1993, hep-th/9304063.

[32]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[33]  C. M. Cosgrove,et al.  Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .

[34]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[35]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[36]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[37]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[38]  τ-function evaluation of gap probabilities in orthogonal and symplectic matrix ensembles , 2002, math-ph/0203049.

[39]  P. Forrester,et al.  LETTER TO THE EDITOR: Random walks and random fixed-point free involutions , 2001, math/0107128.

[40]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[41]  P. Forrester,et al.  Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.

[42]  C. Tracy,et al.  On the distributions of the lengths of the longest monotone subsequences in random words , 1999, math/9904042.

[43]  P. Forrester,et al.  Gap, probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles , 2000, math-ph/0008032.

[44]  P. Forrester,et al.  Exact Wigner Surmise Type Evaluation of the Spacing Distribution in the Bulk of the Scaled Random Matrix Ensembles , 2000, math-ph/0009023.

[45]  Y. Ohta,et al.  Discrete integrable systems from continuous Painlevé equations through limiting procedures , 2000 .

[46]  P. Forrester Painlevé transcendent evaluation of the scaled distribution of the smallest eigenvalue in the Laguerre orthogonal and symplectic ensembles , 2000, nlin/0005064.

[47]  C. Cosgrove Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .

[48]  K. M. Tamizhmani,et al.  On a transcendental equation related to Painlevé III, and its discrete forms , 2000 .

[49]  I. Johnstone On the distribution of the largest principal component , 2000 .

[50]  Mark Adler,et al.  Integrals over classical groups, random permutations, toda and Toeplitz lattices , 1999, math/9912143.

[51]  Y. Ohta,et al.  Determinant Formulas for the Toda and Discrete Toda Equations , 1999, solv-int/9908007.

[52]  J. Baik,et al.  The asymptotics of monotone subsequences of involutions , 1999, math/9905084.

[53]  L. Haine,et al.  The Jacobi polynomial ensemble and the Painlevé VI equation , 1999 .

[54]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[55]  C. Tracy,et al.  Random Unitary Matrices, Permutations and Painlevé , 1998, math/9811154.

[56]  M. Noumi,et al.  Symmetries in the fourth Painlevé equation and Okamoto polynomials , 1997, Nagoya Mathematical Journal.

[57]  M. Noumi,et al.  Higher order Painlevé equations of type $A^{(1)}_l$ , 1998, math/9808003.

[58]  P. Forrester,et al.  Random matrix ensembles with an effective extensive external charge , 1998, cond-mat/9803355.

[59]  Eric M. Rains,et al.  Increasing Subsequences and the Classical Groups , 1998, Electron. J. Comb..

[60]  Humihiko Watanabe Defining variety and birational canonical transformations of the fifth Painleve equation , 1998 .

[61]  J. Satsuma,et al.  A study of the alternate discrete Painlevé II equation , 1996 .

[62]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[63]  P. Moerbeke,et al.  Random Matrices, Vertex Operators and the Virasoro-algebra , 1995 .

[64]  P. Forrester,et al.  Normalization of the Wavefunction for the Calogero-Sutherland Model with Internal Degrees of Freedom , 1994, cond-mat/9412058.

[65]  Peter J. Forrester,et al.  Complex Wishart matrices and conductance in mesoscopic systems: Exact results , 1994 .

[66]  V. E. Adler,et al.  Nonlinear chains and Painleve´ equations , 1994 .

[67]  P. Forrester Exact results and universal asymptotics in the Laguerre random matrix ensemble , 1994 .

[68]  C. Tracy,et al.  Fredholm determinants, differential equations and matrix models , 1993, hep-th/9306042.

[69]  C. Tracy,et al.  Level spacing distributions and the Bessel kernel , 1993, hep-th/9304063.

[70]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[71]  C. M. Cosgrove,et al.  Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .

[72]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[73]  Kazuo Okamoto,et al.  Studies on the Painlev equations: III. Second and fourth painlev equations,P II andP IV , 1986 .

[74]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[75]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[76]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[77]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .