Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory

1. Many-Valued Logic and Fuzzy Set Theory S. Gottwald. 2. Powerset Operator Foundations for Poslat Fuzzy Set Theories and Topologies S.E. Rodabaugh. 3. Axiomatic Foundations of Fixed-Based Fuzzy Topology U. Hoehle, A.P. Sostak. 4. Categorical Foundations of Variable-Basis Fuzzy Topology S.E. Rodabaugh. 5. Characterization of L-Topologies by L-Valued Neighborhoods U. Hoehle. 6. Separation Axioms: Extension of Mappings and Embedding of Spaces T. Kubiak. 7. Separation Axioms: Representation Theorems, Compactness, and Compactifications S.E. Rodabaugh. 8. Uniform Spaces W. Kotze. 9. Extensions of Uniform Space Notions M.H. Burton, J. Gutierrez Garcia. 10. Fuzzy Real Lines and Dual Real Lines as Poslat Topological, Uniform, and Metric Ordered Semirings with Unity S.E. Rodabaugh. 11. Fundamentals of Generalized Measure Theory E.P. Klement, S. Weber. 12. On Conditioning Operators U. Hoehle, S. Weber. 13. Applications of Decomposable Measures E. Pap. 14. Fuzzy Random Variables Revisited D.A. Ralescu.